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Abstract 

A review is given of research into the measurement 
of crystal structure-factor amplitudes and phases by 
transmission electron diffraction. Accuracies for 
amplitudes are commonly a fraction of a percent 
(after conversion to X-ray structure factors) while 
phases may now be measured in favorable cases using 
three-beam electron diffraction to an accuracy of 
much better than 1 °. Following a brief review of 
theory, the main techniques are outlined. These 
include quantitative convergent-beam electron 
diffraction, the critical-voltage method, the intersect- 
ing K_ikuchi- and HOLZ-Iine methods and methods 
based on weak high-order reflections in wide-angle 
patterns. Enantiomorphs and polarity are discussed. 
Summaries are given of measurements of the mean 
inner potential and of structure factors generally. A 
brief review of the implications of this work for 
studies of crystal bonding and ordering in alloys is 
given, and its use to test ab initio computations of 
charge density. The mean inner potential is found to 
be the quantity most sensitive to the bonding distribu- 
tion of valence electrons and sensitively constrains 
accurate X-ray structure-factor measurements. Elec- 
tron diffraction techniques are to be preferred for 
studies of individual microcrystals or artificially 
formed structures and for the very accurate measure- 
ment of structure-factor phases in acentric crystals 
with small unit cells. 

I. Introduction 

The development of synchrotron sources for X-ray 
diffraction and of powder diffraction methods for 
neutrons, together with the remarkable computing 
power of new small computers and their sophisticated 
crystallographic software, might appear to give the 
modern crystallographer all the tools required for the 
study of organic and inorganic crystals. The need 
for an additional 'electron crystallography' is not 
immediately apparent. However, each probe of the 

* Editorial note: This invited paper is one of a series of compre- 
hensive Lead Articles which the Editors invite from time to time 
on subjects considered to be timely for such treatment. 

solid state interacts differently with matter and thus 
exposes a different aspect of a crystal. In addition, 
electron beams (unlike X-rays and neutrons) may be 
focused down to a probe of sub-nanometer 
dimensions using electron lenses, allowing micro- 
phases which cannot easily be crystallized to be 
studied. Very briefly (and neglecting second-order 
effects), while X-ray methods give us information on 
the ground-state crystal charge density and neutrons 
on magnetic properties, lattice vibrations and crystal 
structure, electrons probe the electrostatic crystal 
potential and internal magnetic fields. We shall see 
that the interaction of a focused kV electron beam 
with a thin crystal is unique in its ability to provide 
highly accurate measurements of low-order structure- 
factor amplitudes and phases from extremely small 
sample volumes. This enhanced accuracy is a con- 
sequence of the way in which Poisson's equation 
relates X-ray and electron structure factors. For the 
benefit of readers with a background in X-ray diffrac- 
tion, it should be said that electron diffraction tech- 
niques measure the Fourier coefficients Vg (in V) of 
the total ground-state crystal potential (including the 
nuclear contribution) and we shall refer to these Vg 
loosely in this article as structure factors. They are 
related to X-ray structure factors (the Fourier 
coefficients of the crystal charge density, excluding 
the nuclear contribution) by Poisson's equation if 
high-energy electrons are used. (At beam energies 
below a few kV, exchange and virtual inelastic correc- 
tions to the potential mean that Poisson's equation 
and the Mott-Bethe formula cannot be used.) For 
non-centrosymmetric (acentric) crystals, measure- 
ments of X-ray structure-factor phases may now be 
made by electron diffraction with an unrivalled 
accuracy of a fraction of a degree for small-unit-cell 
inorganic crystals. As discussed in § 5, these measure- 
ments allow, amongst other things, the study of crystal 
bonding and of short-range order and composition 
in alloys, in addition to providing measurements of 
Debye temperatures. They may also be used to test 
band-structure calculations. Problems of defects, dis- 
persion and extinction are avoided, or are accounted 
for exactly in the data analysis. The electron micro- 
diffraction method used may thus be applied to the 
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great variety of metastable microphases which occur 
in minerals (or in modern synthesized composite 
materials) and to those artificial multilayer or quan- 
tum-well structures which could not readily be 
studied by other techniques. The real power of elec- 
tron-beam methods now lies in their accuracy and 
ability to study real materials rather than synthetically 
grown single-crystal analogs. 

Experimental and other considerations also 
influence our choice of probes, such as particle life- 
time, the brightness of available sources, the efficiency 
of detectors, the strength of the scattering and the 
size of the sample volume irradiated. Factors favoring 
the use of electron diffraction include the high bright- 
ness of field-emission electron sources (comparable 
to that of synchrotrons), the high detective quantum 
efficiency of electron detectors (which approaches 
unity) and the strong scattering cross sections 
involved. 

In the general context of the field of electron mi- 
croscopy, the measurement of dynamical diffraction 
intensities discussed in this review constitutes a small 
and highly specialized field of research - the over- 
whelming bulk of the work in electron microscopy is 
concerned with imaging or microanalysis and with 
the analysis of diffraction-pattern symmetries and 
geometries rather than their intensities. Thus the iden- 
tification of a microphase from a list of candidate 
structures is usually based on evidence from the 
characteristic X-ray spectra and from the symmetry 
of the microdiffraction patterns. The ability of modern 
electron microscopes to form images of crystals at 
atomic resolution has proven invaluable for the study 
of crystal defects and the atomic mechanisms in- 
volved in phase transformations. The magnetic inter- 
action also provides a uniquely powerful ability to 
study the spatial distribution of magnetic fields in 
ferromagnets and superconductors by electron 
holography. These imaging and microanalytical tech- 
niques account for most of the impact of electron 
microscopy on materials physics and chemistry. The 
development of truly quantitative methods in electron 
crystallography is a more recent development, made 
possible by advances in electron spectrometer design, 
field emission guns and computer hardware and soft- 
ware. Recent work suggests that the electron micro- 
diffraction pattern is now the most accurately quan- 
tifiable signal obtainable from a modern electron 
microscope. With the appearance of commercial 
imaging energy filters, convenient field-emission guns 
and the new workstations, we therefore anticipate 
considerable growth in this field. 

Historically, the early workers were deterred from 
using electron beams for crystallography by the 
apparent intractability of the multiple-scattering 
problem, first formulated by H. Bethe for the reflec- 
tion case (Bethe, 1928). Structure-factor measure- 
ments were nevertheless attempted at an early stage, 

however, using two-beam theory (Blackman, 1939; 
MacGillavry, 1940) applied to the first experimental 
convergent-beam electron diffraction (CBED) pat- 
terns. These patterns, not greatly different from 
modern patterns, were obtained from mica as early 
as 1939 (Mollenstedt, 1989). Considerable effort was 
also then devoted to exploring the limits of the kine- 
matic approximation (Vainshtein, 1964). Much of the 
early work was therefore applied to crystals contain- 
ing light elements [including hydrogen (Cowley, 
1953)], such as organic films, paraffin wax, monohy- 
drates of halides etc., and was based on single-scat- 
tering theory applied to polycrystalline material. Slow 
but steady progress has been made in the analysis of 
extremely thin single-crystal organic films using a 
combination of imaging and diffraction methods 
based on single-scattering theory (Dorset, 1983; 
Unwin & Henderson, 1975). (By indicating atomic 
positions directly, the associated imaging thus 'solves' 
the phase problem of X-ray crystallography.) In 
favorable cases where thin organic films crystallize, 
these structures have now been solved in three 
dimensions to a resolution of a few A. This work, 
which has also come to be known as electron crystal- 
lography, is not covered in this review because the 
techniques and data analysis used have little in com- 
mon with work on inorganic crystals. [Emphasis falls 
on the important problems of sample preparation, 
radiation damage and bending (Dorset, 1983) for 
organic films, rather than on questions of multiple 
scattering and accuracy.] For inorganic crystals, the 
kinematic theory was found to fail for even a few 
atomic layers of medium-atomic-weight material at 
100 kV. Reviews of this early work can be found in 
Pinsker (1949), Vainshtein (1964) and Cowley (1967). 
Early work on clay minerals is reviewed in Zvyagin 
(1967). With the availability of inexpensive reduced- 
instruction-set computer (RISC) workstations, it has 
become possible to perform dynamical computations 
involving many hundreds of interacting beams in a 
few minutes so that multiple-scattering effects are 
now routinely incorporated exactly and indeed may 
be used to advantage (for example to expose struc- 
ture-factor phases), as forseen by the early researchers 
(Kambe, 1957). The development of nanoprobe 
instruments has removed the need to work with poly- 
crystalline material in which the degree of orienta- 
tional disorder was always uncertain. 

This review aims to summarize most of the 
literature on the measurement of structure-factor 
amplitudes and phases by electron diffraction and 
the theoretical and experimental principles on which 
the measurements are based. The material can be 
organized by technique or by material - I have 
attempted to do both in §§ 3 and 5. Experimental 
aspects are included in § 3. Two recent books contain 
review chapters on this topic (Cowley, 1992; Spence 
& Zuo, 1992) and Vol. 41, No. 3 of the Australian 
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Journal of Physics is devoted to accuracy in structure- 
factor measurement generally. We shall see that, 
although no fundamental reason prevents it, few 
unknown crystal structures have been solved using 
electron diffraction data alone. The bulk of the review 
is therefore concerned with the problem of refining 
structure factors for small-unit-cell crystals of known 
structure. Three main techniques have been used for 
this purpose - the critical-voltage method, the inter- 
secting Kikuchi [or higher-order Laue zone (HOLZ)] 
line method and the quantitative convergent-beam 
(CBED) technique. The following abreviations are 
therefore used frequently: higher-order Laue zone 
(HOLZ), intersecting Kikuchi-line method (IKL) 
(similar to the Renninger effect in X-ray diffraction), 
zero-order Laue zone (ZOLZ) and critical voltage 
(CV). In the light of past misunderstandings with the 
X-ray community, it is important to point out that 
we define a HOLZ as any plane of reciprocal-lattice 
points which does not pass through the origin. (Often 
this plane will lie normal to the incident electron 
beam.) The ZOLZ includes the origin. These various 
techniques are discussed in § 3 (with emphasis on 
novel techniques for phase measurement) following 
a brief review of the relationship between the different 
interactions involved in X-ray and electron crystal- 
lography. § 5 discusses the special case of the zero- 
order Fourier coefficient Vo of the crystal electrostatic 
potential, which provides a sensitive characterization 
of the distribution of bonding electrons. (The corre- 
sponding quantity in X-ray crystallography, the zero- 
order coefficient of charge density, is equal to the 
number of electrons in the unit cell.) § 6 lists many 
electron diffraction measurements by material. § 7 
summarizes what we have learnt from these measure- 
ments about materials and suggests future directions. 

2. Theory. What is measured. Temperature 
effects. Absorption 

We first discuss the relationship between the 
intensities in electron diffraction patterns and the 
crystal potential, its charge density and certain contri- 
butions to the crystal total energy. 

Whereas X-ray crystallography is based on 
Maxwell's equations (Zachariasen, 1932) (or quan- 
tum electrodynamics), electron diffraction commen- 
ces with the Schroedinger (or Dirac) equation. These 
are related through the many-electron wavefunction 
for the crystal electrons, which defines both the crystal 
charge density and electrostatic potential. We now 
outline the relationship between the quantities 
measured in electron and X-ray diffraction from first 
principles. For the system of the beam electron (with 
interaction Hamiltonian lib and total energy Eb) 
traversing a thin crystal (with Hamiltonian H~ and 
total energy Ecr), the Schroedinger equation becomes, 

in SI units, 

[-(h2/87r2m)V2+ Hc+ Hb]rlt=(Eb + Ecr)~ (1) 

where 
ZN ZN N 

H ~ = -  ~ (h2/8"n'2m)V 2- ~ ~, Ze2/4~reolRa-ri[ 
i = l  i = 1  a = l  

ZN ZN N N 
+½ E Y. e2/4"a'eoro+½E E ZZe2/4n'eolR,,b] 

i#j a#b 
(2) 

for a crystal containing N identical atoms, each of 
Z electrons. We have ignored inelastic electroh scat- 
tering. Here r o = [ri-rjl are crystal electron coordi- 
nates, while Rab = IRa--Rb[ are nuclear coordinates. 
If the electron-beam coordinate is r, then 

Hb= X e2/47re01r-rj l-Z Ze2/47reolr-R,I. (3) 
j a 

It has been shown (Rez, 1978) that the exchange 
energy between the beam and crystal electrons is 
negligible. Thus, because of its high energy, the beam 
electron can be distinguished from the crystal elec- 
trons. If the total wavefunction is then written in the 
absence of absorption as a single product of wave- 
functions, we have 

~( r ,  r , ,  r 2 , . . . ,  r .)  = G( r , ,  r 2 , . . . ,  r.)~b(r). (4) 

Here G is an antisymmetric linear combination of 
one-electron wavefunctions. 

For the crystal electrons, 

HoG = Ecr$~. (5) 

From these equations, it can be shown that, if absorp- 
tion is neglected, the beam electron wavefunction 
alone now satisfies a Schroedinger equation 

(1/47r2)V2~b +(2m/h2)(5 tll*cHb~c dr)~bb = K2lllb (6) 

where K2=(2m/hZ)Eb is the beam electron wave 
vector in free space. Thus, V(r), the potentia) seen 
by the beam electron, whose structure factors Vg we 
may measure in an electron diffraction experiment, 
is the matrix element in the above equation (divided 
by e). It may be solved using Bloch waves and using 
a Fourier expansion for V(r), as described in texts 
on electron diffraction (Hirsch, Howie, Nicholson, 
Pashley & Whelan, 1977; Reimer, 1984). 

If G is now written as a Slater determinant in terms 
of one-electron wavefunctions ~pj(rj)aj (with spin part 
aj), then (Raimes, 1961) 

eV(r) = .[ if* Hb~bc dr 

- ~ f  4--~-~ - e21 ~J(r')llr71 V Ze2 - d r ' -  Z (7) 
• " 47reolr- Ril 

_ f ep(r') Ze 2 
- e  47reo[r-r'l d r ' -~47reo l r_R , ] .  (8) 
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This equation has the form of the integral solution 
of Poisson's equation and expresses V(r), the poten- 
tial seen by the beam electron, as the sum of the 
potential due to a (dimensionless) electronic charge 
p(r) = 0~@* = Z~ I%(r)l ~ and a nuclear potential. This 
defines p(r), ~is obtainable by electron or X-ray 
diffraction st,udies, in terms of the many-electron crys- 
tal wavefunction 6~. The total crystal ground-state 
energy is, in an obvious notation, 

Ecr=S O*H¢Ocdr (9) 

= E k i n  + E e / n u c - { -  Ee/e+ E n u c / n u c +  Eex (10) 

where 

lffe2p(rj)p(rj) E~/~=~ 4Zreolr,-rjl drj dry= EH (11) 

using the same determinant of one-electron 
wavefunctions. Thus, as in X-ray crystallography, the 
energy contribution to the crystal total energy which 
might be measured by electron diffraction is the elec- 
trostatic, Coulomb or Hartree energy EH. The kinetic 
energy of the crystal electrons Eki, is related (under 
certain conditions) to their potential energy through 
the virial theorem, while the nuclear interaction term 
En~¢/n~¢ may be evaluated by an Ewald lattice sum. 
Thus it is the exchange and correlation energy E~x 
which is not accessible in electron diffraction experi- 
ments, since this depends in a complicated way on 
cross terms between the complex one-electron crystal 
electron wavefunctions q~(rj). It has, however, been 
shown to be a unique universal functional of p(r) 
(Hohenberg & Kohn, 1964). 

The electrostatic energy EH may be expressed in 
terms of X-ray structure factors f (s) .  For example, 
for a diatomic molecule it is proportional to 
(Spackman & Maslen, 1986) 

oo 

E~ = [ [Za--f~(S)][Zb--fb(s)]Jo(sR) ds. (12) 
n 

The magnitude of the missing term Eex depends on 
the material, however. For diamond, for example, 
Eex = 2 eV (Chadi, 1989). We conclude that E,x can- 
not be neglected and that Ecr cannot easily be deter- 
mined from electron diffraction data. 

It has also been shown that the corrections to V(r), 
the potential seen by the beam electron, due to virtual 
inelastic scattering are negligible (Smart & Hum- 
phreys, 1978; Rez, 1978). 

The Fourier coefficients of V(r) (in V) are the 
electron structure factors Vg measured by electron 
diffraction. Since we have adopted the sign conven- 
tion used in most of the electron diffraction and 
solid-state-physics literature [in which a plane wave 
is taken to have the form exp (+27riK. r)], our 
expressions for electron structure factors have the 
opposite signs from those used in International Tables 

for Crystallography (1989) and in X-ray work gen- 
erally. [A review article using the crystallographic 
convention can be found in Spence (1992).] The effect 
of a sign change is to conjugate all structure factors 
in acentric crystals and must be taken into account 
when comparing X-ray and electron phase determina- 
tions. Thus, 

V(r) = ~  Vg exp (+2¢rig • r). (13) 
g 

These coefficients Vg may now be related to the 
dimensionless Fourier coefficients FX(g)/12 of p(r) 
which are measured by X-ray diffraction, since the 
Fourier transform of (8) gives the famous Mott-Bethe 
relationship (in SI units) 

V~=(lel/16~r2eo12) Z {[Zi-f~'(s)]/s2} 
i 

x exp (-B~s 2) exp (-27rig • r) 

= (h2/87reomele112)F~. (14) 

Here the sum is over the unit cell of volume 12 (m 3) 
and Fg s is the electron structure factor according to 
the old (Born-approximation) system (International 
Tables for Crystallography before 1990). Vg is given 
in V, me is the rest mass of the electron and s =  
sin 0B/A =lgl/2. The Debye-Waller factor is Bi = 
8rr2(u 2) for species i, with (u 2) the mean-square 
vibrational amplitude of the atom. If B, s and 12 are 
instead given in A units, then Vg is given in V as 

Vg = (1.145896/12) ~ {[Zi-f~(s)]ls  2} 
i 

x exp (-Bis 2) exp (-2tr ig • ri) 

= (47.878009/12 ) F~. (15) 

Two other quantities commonly used in the 
literature are the beam-energy-dependent electron 
structure factor Ug and the two-beam extinction 
distance ~g, 

Ug= yFBg/~r12=2mlelVg/h 2 (16) 

~:.= l /(xlu,,I)= ~-/(IV, lo-)= ~-a/('y,XlF~l) (17) 

where y is the relativistic constant. For Vg in V and 
Ug in A -2, we then have 

Ug=0.006648352(1 + 1.956934x 10-6Eo) Vg. (18) 

If the X-ray structure factor is defined (with uncon- 
ventional signs) by 

F'~=~f~:(s) exp (-Bis2) exp (-27rig . r), (19) 
i 

where the electronic charge density (in electrons per 
cell) is 

p(r) = 12-1 ~ F~ exp (27rig • r), (20) 
g 

then we obtain the following expression for the 
retrieval of an X-ray structure factor Fg from electron 
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diffraction data: 

F~ = Y" Zi exp (-B/s  2) exp (-27rig • r) 
i 

-(8*r2eoh2ns2/ym,e 2) Ug (21) 

= ~, Zi exp (-B~s 2) exp (-2~rig • r) 
i 

- (  Cas2/'y) Ug. ( 2 2 )  

Here the numerical constant C = 131.2625 if s, ~ and 
Ug are given in/~ units. 

The role of the temperature factor in conversions 
between X-ray and electron structure factors is impor- 
tant. The atomic vibrational amplitude u is appreci- 
able even at 0 K, where in some materials it falls to 
only about half its room-temperature value. Thus, the 
observable crystal potential is a temperature-depen- 
dent quantity - the static potential computed from 
band-structure calculations is not an experimental 
observable. We see that a knowledge of the Debye- 
Waller factor Bi is essential in order to convert a 
structure factor Ug measured by electron diffraction 
at temperature T into the corresponding X-ray struc- 
ture factor Fg at temperature T. A knowledge of B/ 
is similarly required to convert measured X-ray scat- 
tering factors into electron scattering factors for the 
same temperature. 

Relatively little attention has been devoted to the 
problem of measuring temperature factors by electron 
diffraction. The most complete recent studies have 
been those of Kuroda, Tomokiyo & Eguchi (1981), 
Matsuhata, Tomokiyo, Kuroda & Eguchi (1983) and 
Matsumura, Tomokiyo & Oki (1989). An analysis of 
the effects of temperature on extinction distances in 
electron diffraction is given by Howie & Valdre 
(1967). Here it is shown that the temperature depen- 
dence of electron structure factors for an isotopic 
centric crystal containing only one type of atom can 
be written as 

Ug(tot.) = Ug exp ( -Bg2/4)  + iUg(phonon) 

where B = B(T) is the temperature factor and U~ is 
the contribution to the imaginary part of the optical 
potential used to describe phonon scattering, com- 
monly referred to as 'absorption'. Anharmonic vibra- 
tions will further modify the real part of Ug. For 
atoms vibrating independently in an anharmonic 
potential, it may be shown (Willis & Pryor, 1975) that 
structure factors may be written 

Vg = 1-1-1Y.J~.(s) Tj(s) exp (-27rig • r j) 
J 

where, in general, both f ( s )  and T(s) are now com- 
plex. Anharmonic vibrations introduce both an 
imaginary part to T(s) and a correction to the real 
(harmonic) part of T(s). 

By measuring the intensity of several reflections 
(particularly high orders) as a function of g, it is 

possible to measure B(T) using electron diffraction 
data. Measurements may also be made at several 
temperatures. In one case, for example (Goodman, 
1971), values of both Ug and B were determined 
separately for MgO. In such a centric crystal, the 
Debye-Waller factor affects the real (elastic) potential 
(and therefore the ratio A~ B in Fig. 2, to be discussed 
in more detail below) and, most sensitively, the 
intensity of the high-order reflections. We will see 
that the effects of absorption for beam g are best 
measured from the asymmetry of the zlero-order disc 
with g at the Bragg condition. [The zero-order disc 
provides the rocking curve for the 'direct' (g=0)  
beam.] The two effects may therefore be separated 
readily in centric crystals. The influence of the bond- 
ing effect may be disentangled from the temperature 
effect by matching reflections as a function of g, 
high-order reflections being more sensitive to the lat- 
ter and low orders to the former. Both the critical- 
voltage effect and the intersecting HOLZ (or Kikuchi- 
line) method to be discussed have also been used to 
measure Debye-Waller factors. These depend sensi- 
tively on temperature, since the IKL gap and the 
critical voltage both depend on the real part of the 
structure factor in centric crystals. Thus, temperature 
may be used as an adjustable parameter to fine-tune 
patterns near the critical voltage (Sellar, Imeson & 
Humphreys, 1980). In recent work, both critical vol- 
tages and K_ikuchi-line splittings for Si, Ge, Al, Cu 
and Fe have all been measured as a function of 
temperature (Matsumura, Tomokiyo & Oki, 1989). 
These workers find that the anharmonic contribution 
to the temperature factor in the metals is readily 
detectable above 300 K, but is very small for the 
semiconductors. They derive values of structure fac- 
tors in good agreement with those obtained by X-ray 
and neutron diffraction. There would appear to be 
considerable scope for more studies of this type, 
provided that adequate CBED facilities and energy 
filtering can be fitted to high- and medium-voltage 
electron microscopes. The use of HOLZ lines in 
CBED patterns to measure thermal expansion 
coefficients is described by Angelini & Bentley (1984). 

From (15) we see that, at small scattering angles, 
small changes in f~  result in large changes in fT. 
Thus, iff~' is known to a particular percentage error, 
f x  may be deduced to a greater accuracy. This 
observation has been the basis for much of the interest 
in quantitative electron crystallography, including the 
possibility of detecting hydrogen in crystals. 

The asymptotic behavior of the electron scattering 
factors for large and small values of s is considered 
by Peng & Cowley (1988). At large angles the angular 
dependence of Rutherford scattering is required. New 
relativistic Hartree-Fock (RHF) calculations more 
accurate than those in International Tables for Crystal- 
lography at high angles have recently been published 
by Fox, O'Keefe & Tabbernor (1989). The zero-angle 
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value is discussed in § 5, where it is related to the 
diamagnetic susceptibility. 

The Bloch-wave dynamical theory of high-energy 
transmission electron diffraction (HEED) has been 
described in many texts and review articles - in this 
review we will use the symbols, derivations and results 
given by Spence & Zuo (1992) and quote only the 
main results. This formalism is also consistent with 
that of Humphreys (1979), to which review the reader 
is referred for background. Students new to the field 
looking for pedagogically sound reviews are also par- 
ticularly referred to Hirsch et al ~1977), Metherell 
(1975) and Reimer (1984). Very briefly, (6) must be 
rederived in a relativistically correct form and (13) 
used, together with a Bloch-wave expansion of the 
total beam electron wavefunction. We define gn = g • n 
and K,, = K-n ,  where n is a unit vector normal to a 
thin slab of crystal traversed by the beam. This leads 
to (Lewis, Villagrana & Metherell, 1978; Spence & 
Zuo, 1992) 

2KSgC~J) + Y. Ug_hC~ j,= 2K,,(1 + g,/ K,)y'J'Cg (23) 
h 

where y and Cg are eigenvalues and eigenvectors to 
be determined by computation and Sg is the excitation 
error for beam g. This equation includes all HOLZ 
effects, boundary inclination effects and absorption 
terms and may be applied to acentric crystals. The 
most important approximations have been the neglect 
of backscattering, exchange effects between beam and 
crystal electrons and virtual inelastic scattering. To 
transform this equation into a linear eigenvalue 
equation, we define new eigenvector elements 

Bcj) (1 + g./ K,,)l/2('(j) g = - - g  ( 2 4 )  

so that, using (23), 

2KSgB~gJ'/ (1 + g,,/ K,,) 

+ Y~ B~J'Ug_J[( l + g,,/ K,,)'/a( l + h./ K.) t/2] 
h 

2 _ ( J ) n ( J )  = K,r  o g .  (25) 

This is the fundamental eigenvalue equation to be 
solved in order to describe coherent multiple electron 
scattering in a thin slab of crystal. If the surface 
normal is approximately antiparallel to the beam, so 
that K, >> g,, then g , /K ,  is negligible and we have 

2KSgC(gJ) + ~. Ug_hC~J)= 2K, y(J)Cg. 
h 

This equation may be written in matrix form 

AC i = 2K,,TJC ~ (26) 

where the off-diagonal entries of the 'structure matrix' 
A are Ug-h, while the diagonal entries are the excita- 
tion error terms 2KSg. Here C j is a column vector. 
Equation (26) includes HOLZ effects in an approxi- 
mate way and the crystal tilt through the term in K.. 
The distances y ~ have a geometric interpretation as 

the displacement, in the direction of the surface nor- 
mal, of the true dynamical dispersion surface from 
spheres drawn about every reciprocal-lattice point. 
These spheres have radii K. [For diagram s of the 
relevant dynamical dispersion surfaces, see Hirsch et 
al. (1977), Metherell (1975) and Spence & Zuo 
(1992).] 

For centrosymmetric crystals without absorption, 
A is real, symmetric and Hermitian. For centrosym- 
metric crystals with absorption, A is complex, sym- 
metric and not Hermitian. 

If n beams are included, the structure matrix A has 
dimensions n x n and (26) gives n eigenvalues and n 
eigenvectors. These define the wavefield inside the 
crystal which may be written according to the 'Darwin 
representation' (Hirsch et al., 1977) of n plane waves 
propagating in the crystal, each in the direction of 
K+g. Thus, 

~ ( r )  = Y~ q~g exp [2 r r i (K+g) . r ] .  (27) 
g 

Then the wave amplitude at crystal thickness t 
becomes 

~ ( t )  = ~ ciC'g exp (2rriyit). (28) 
i=l 

Although the Bloch waves in the ZOLZ contributing 
to a particular Bragg beam travel in slightly different 
directions inside the crystal, for a parallel-sided slab 
of perfect crystal they are focused to the same point 
at the detector outside the crystal because they all 
have the same x and y wave-vector compondnts. The 
excitation coefficients c~ are to be determined by 
matching the incident waves onto waves inside the 
crystal at the entrance surface. That is, we set t = 0 
in (28) and then solve the resulting linear equation 
for ci. The wavefield inside crystal is then found to be 

(~Oo(t)~ (exp(2.rriy't) . . .  0 ) 

q~g!t))  = C 0 . . .  exp (2rriy"t) 

(29) 

The matrix S=C{exp  (27riyt)}C -1 is known as the 
'scattering matrix' and relates the incident waves to 
the scattered waves for a crystal of thickness t. 

If absorption is not included, the inverse of the 
eigenvector matrix is the transposed conjugate of the 
eigenvector matrix, i.e. C-~ = C*. For a single incident 
plane wave [q~o(0) = 1 and q~g(0) = 0], we find ci = C~)* 
without absorption and ci = C~)- ~ with absorption. The 
C~)- ~ are the elements of the first column of the inverse 
of the matrix whose elements are C'g (column i, row 
g). The intensity of a particular Bragg beam (for a 
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given incident plane wave K) is then found using 

I 1 i lg(g,, ,g,.)=l~g(t)12= CL- Cgexp(21riy't) 
i = l  

(30) 

where t is again the crystal thickness. A Fortran listing 
of a computer program which evaluates (25) and (30) 
can be found in Zuo, Gj~nnes & Spence (1989). 

Dynamical intensities may also be computed by 
the multislice method, which has important advan- 
tages for defects, where the method of periodic 
continuation must be used, and for very small (sub- 
nanometer) coherent electron probes. For accurate 
structure-factor refinement in perfect crystals, how- 
ever, it is usually necessary to include all appreci- 
able HOLZ interactions. The multislice method then 
becomes inefficient (particularly if the crystal period 
in the beam direction is large) since it includes all 
lattice points in the three-dimensional reciprocal lat- 
tice, rather than just those required near the Ewald 
sphere, as in the Bloch-wave method. Yet the speed 
of modern workstations is now so great, particularly 
if combined with array-processor hardware for the 
Fourier series needed by the multislice algorithm, that 
the two methods may be competitive in many cases. 
An important advantage of the multislice method is 
that, if the slice thickness is chosen correctly (Anstis, 
1990), the computation is not self-normalizing, as for 
the Bloch-wave method. Thus, from the sum of 
intensities in a multislice, it is possible to determine 
whether sufficient beams have been included. This 
information is not present in Bloch-wave calculations. 
For a fuller discussion and a comparison of these 
numerical methods, see Kilaas, O'Keefe & Krishnan 
(1987), Spence & Zuo (1992) and Krakow & O'Keefe 
(1989). 

We now consider the effects of inelastic scattering 
on structure-factor refinement. This may be accounted 
for in the theory by the introduction of an optical 
potential (Yoshioka & Kainuma, 1962) V(r)= 
V ' ( r )+  iV'(r), with V'(r) the real crystal potential 
(describing the interaction of the incident electron 
with the crystal electrons and the nuclei) and V'(r) 
a second real potential which accounts for depletion 
of the elastic wavefield by inelastic scattering. Because 
virtual inelastic scattering and exchange corrections 
can be neglected at kV energies, V,(r) (the Coulomb 
or Hartree electrostatic potential) can be related to 
the true ground-state charge density using Poisson's 
equation. If an ideal energy filter is used which 
excludes all inelastic scattering from a CBED pattern, 
then there are two main experimental effects of 
absorption. Firstly, under idealized two-beam condi- 
tions, an asymmetry is introduced into the zero-order 
disc around the Bragg condition and, secondly, 
differences arise between the intensities of the g and 
- g  discs at the Bragg condition in noncentrosym- 

metric crystals. [This has corresponding effects on 
energy-loss spectra (Taft , ,  1987).] For high-energy 
electrons, there are three important inelastic scatter- 
ing mechanisms: (1) inelastic scattering resulting 
from the excitation of crystal electrons; (2) excitation 
of plasmons; (3) excitation of phonons. The plasmon 
scattering contributes to the mean absorption (V~) 
only and the contributions of electron scattering 
decrease rapidly as the scattering angle increases. The 
contribution to Vg(g ~ 0) comes mostly from phonon 
scattering (Hall & Hirsch, 1965; Radi, 1970; Yoshioka 
& Kainuma, 1962). The mean absorption describes 
an overall attenuation of the incident electrons. 
Absorption coefficients have been calculated in the" 
past for a number of crystals by several authors [see 
Reimer (1984) for a review]. A parametric fit for the 
absorption coefficients [such as V'g/ Vg = (A + Bg)g] 
has also been proposed (Ichimiya, 1985) and values 
of A and B have been given for some crystals (Voss, 
Lehmpfuhl & Smith, 1980). Calculations for phonon 
absorption based on the Einstein model, using the 
Debye-Waller factor as input, appear to be useful as 
a first approximation and as a basis for further 
refinement. The Debye-Waller factor is taken from 
experimental X-ray or neutron diffraction results or 
from theoretical calculations. Calculations for total 
absorption coefficients, including plasmon excitation, 
single-electron excitation and phonon scattering, are 
given by Humphreys & Hirsch (1968) and Radi (1970) 
for a range of crystal structures. A comparison of 
measured and experimental values for AI, Cu, Au, 
Si, Ge, MgO and NaCi is given by Weickenmeier & 
Kohl (1991). A Fortran program for computing the 
phonon-scattering contribution to the absorption 
coefficients is also described by Bird & King (1990), 
together with tabulated values for A1, Cu, Ag, Au, C 
and Ga. Measurements for CaF_, are given by 
Ichimiya & Lehmpfuhl (1988), based on an analysis 
of the spot splitting seen in wedge crystals. (These 
may be the most accurate experimental measurements 
available.) 

The Fourier coefficients of the elastic portion of 
the optical potential for a centric crystal are (in V) 

Vg= (h2/2rr,/moel2) Y. f~ (g )  exp (-2trig  • ri) 
i 

x exp (-Big2/4). 

An atomic absorptive form factorf[(g) can be defined 
similarly by 

V'g = ( h 2/2 ~'?,moeI2 ) Y. f[ (g) exp (-27rig-  r,) 
i 

× exp (-Big2~4) 

where Vg is the imaginary part of the Fourier 
coefficient of the optical potential. The 'atomic' 
absorption coefficient f[(g) is then given by (Hall & 
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Hirsch, 1965) ' 

f ' ( g )  = K ~fB(q) fB(q- -g) [exp  ( -Bg2/4)  

- e x p  {-B[q2-(q-g)2]/4}] d2q. 

The integral may be evaluated on a grid of B and 
g values (Bird & King, 1990) or analytically either by 
expanding the atomic scattering factor as a sum of 
Gaussians (Weickenmeier & Kohl, 1991) or by taking 
the Rutherford form for the important high-angle 
part, thus obtaining a closed-form result (Ichimiya, 
1985). 

Absorption coefficients may be measured using the 
intensity distribution in the zero-order disc of a CBED 
pattern at the Bragg condition. The phases of the 
Fourier coefficients of the absorption potential may 
be measured by comparing the intensities of the g 
and - g  reflections near the Bragg condition. 
Examples of these measurements are given in §§ 3.1 
and 3.2. 

3. Techniques 

3.1. Quantitative CBED 

Many researchers have described structure-factor 
refinements based on fitting (30) to the rocking curves 
recorded in experiment convergent-beam (CBED) 
patterns. Figs. l ( a )  and (b) show the principle of the 
CBED method in one dimension. Each point P within 
the (incoherently filled) final illumination aperture 
acts as an independent point electron emitter, which 
defines the direction of a plane wave at the sample. 
For sub-nanometer probes, the illumination may take 
the form of a coherent aberrated spherical wave. 
However, for perfectly crystalline slabs, the variation 
of intensity in the CBED rocking curve is then the 
same as for the incoherent case provided the orders 
do not overlap (Spence & Carpenter, 1986). A source 
point such as P gives rise to a set of scattered waves 
which reach the detector at a family of points such 
as P'. A different source point Q similarly results in 
a different family of diffracted beams Q'. Thus, each 
point in the central CBED disc corresponds to a 
different incident-beam direction and defines a family 
of conjugate points differing by reciprocal-lattice vec- 
tors, one in each CBED disc. These directions can 
be related to the Ewald-sphere construction as shown 
in Fig. l (b) .  

In practice, the intensities of several orders near 
the Bragg condition must be compared with calcula- 
tions for a range of incident-beam directions 
(Kx, Ky). A subset of inner structure factors is 
adjusted until the dynamical rocking curve fits the 
experimental result. Outer structure factors are taken 
from calculations for free atoms. A separate matrix 
diagonalization is required for each incident-beam 
direction, which defines a point on the rocking curve. 
The specimen thickness, absorption coefficients and 
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Fig. ]. (a) Simplified ray diagram for convergent-beam electron 
diffraction. I f  only elastic Bragg scattering is allowed, source 
point P gives rise to conjugate points P', one in each disc. Source 
point Q defines a different incident-beam direction and set of 
diffracted beams Q'. The camera length is L. (b) Two Ewald- 
sphere orientations differing by ~, just off (continuous lines) 
and on (dashed lines) the Bragg condition. Note the direction 
of K t. The excitation error is Sg. In this simplified one- 
dimensional case, Sg=2OBa/A =ga, where g is a reciprocal- 
lattice vector. Methods for calibration of the beam direction in 
two dimensions are given by Spence & Zuo (1992). 
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structure factors are all treated on an equal footing 
as adjustable parameters. Accelerating voltage is cali- 
brated by comparing the pattern of HOLZ lines in 
the (000) CBED disc for silicon with dynamically 
corrected calculations for a sparse zone axis (Lin, 
Bird & Vincent, 1989; Zuo, 1992). For reviews of this 
work, see Cowley (1967) and Goodman (1978). Typi- 
cal of this approach are the papers of Goodman & 
Lehmpfuhl (1967) and Avilov, Semiletov & 
Storozenko (1989) on MgO and Voss et al. (1980) on 
silicon. See also H0ier, Zuo, Marthinsen & Spence 
(1988) for InP, Ishizuka & Taft0 (1984) for ZnS, 
Kreutle & Meyer-Ehmson (1969) for Si, Marthinsen 
& Hoier (1988), Shishido & Tanaka (1976) for Ge, 
Smart & Humphreys (1978) for Cu, Smith & 
Lehmpfuhl (1975), Steeds & Mansfield (1984), 
Terasaki, Watanabe & Gj0nnes (1979) for Si and 
Gjonnes, Gjonnes, Zuo & Spence (1988) and Zuo, 
Spence & O'Keefe (1988) for GaAs. 

The results of two- and three-beam theory can be 
used as a guide to find which regions of the pattern 
are most sensitive to changes in the structure factors. 
By differentiating the two-beam result with respect to 
each of the parameters t, Ug, h and Sg it is found 
that the best sample thickness is the steepest part of 
the Pendell6sung fringe (where intensity changes most 
rapidly with both thickness and structure factor), the 
best orientation for refinement of Ug is the Bragg 
condition for reflection g, while the three-beam 
degeneracy point gives greatest sensitivity for phase 
measurement (see § 3.2). For a given crystal, the 
adjustable parameters include t, Ug and choice of 
orientation. In the past, only the low-order structure 
factors of small-unit-cell crystals have been refined, 
for which the Debye-Waller factors and atomic coor- 
dinates were accurately known. It will be seen, 
however, that the automated refinement technique to 
be described can readily be generalized to refine other 
parameters, such as atomic coordinates, local strain 
and Debye-Waller factors. 

First, consider the experimental conditions which 
provide the greatest sensitivity to changes in structure 
factors. The solutions to (26) and (30) if only two 
beams are admitted give the intensity Ig as a function 
of sample thickness t, structure factor Ug, accelerating 
voltage and excitation error Sg as 

[ U g [  2 sin 2 [( ~t/K.)(KES2g --~-[Ug[2) 1/E] 
I~= KEs2 +IUgl2 (31) 

= IGI 2 sin E (TrtAy)/(K.AT) z (32) 

with 

Io= 1 - I g .  

Here a y  is the gap between the two-beam dispersion 
surfaces. The intensity minima occur at Sg values 

S2=[n2/tE(K/K.)2]-IUgI2/K 2. (33) 

The thickness measured is the effective crystal 
thickness, t e"= t (K/K.)= t /cos 0, where 0 is the 
angle between the beam direction and the surface 
normal. The intensity at the intensity maxima is given 
by 

Ig=[~t[Ug[/K.]2/(1 + xE), (34) 

where x is given by the solutions of x = tan x. At the 
Bragg condition sg = 0, the intensity becomes 

lg= sin 2 (zrt] Ug[/K,). (35) 

The periodicity of the intensity with thickness when 
Sg # 0 is L = (g(1 + w2) -'/2. 

Fig. 2 shows the two-beam intensity function plot- 
ted as a function of both thickness and orientation. 
The dimensionless parameter to = Sg~:g has been used, 
with ~g= 1/(AUg). The position of minima in the 
rocking curve well away from the Bragg condition 
(Sg large) are more sensitive to changes in thickness 
than to changes in structure factor, due to the factor 
of n 2 in (33), and these minima are therefore used to 
determine sample thickness. Structure factors, 
however, are best determined from the ratios of the 
intensity maxima B/A shown in Fig. 2 at the Bragg 
condition for the reflection of interest and at one of 
the optimum thicknesses t,. In practice, the value 
of t, will be chosen to maximize the ratio of elastic 
to inelastic scattering. For Sg=0, from (31), lg is 
seen to be equally sensitive to t and Ug, so 
that the optimum thicknesses t, = ~ g ( n + l / 4 ) - -  
(n + 1/4)K/Ug should be used where the slope ofthe 

• thickness fringes is greatest. Thus, owing to the sine 
function in this equation, lg can be very sensitive to 
changes in structure factor. For example, when 
t[Ug[/K =5/4 ,  a 1% change in Ug results in a 6% 
change in the B/A ratio. It is possible to obtain two 
Bragg conditions in a single systematics CBED 
recording, or more in two dimensions. For accurate 

2 / t 

,, /1~25 /  ,, /0.~ 

/ / 

to = ~gSg It f~" 

/ / tn = (n ÷ 1/4) ~g 

Fig. 2. The variation of the intensity of a diffracted beam with 
both thickness and incident-beam direction (represented by to) 
in the two-beam approximation. Structure factors are best deter- 
mined using the ratio of intensities A~ B shown, at which thick- 
ness the sensitivity is greatest. 
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work, zero-loss energy-filtered data are required along 
the entire systematics line, in addition to photo- 
graphic recordings for the determination of the 
approximate beam direction. This process must be 
repeated with each order to be refined successively 
set at the Bragg condition. Dynamical simulations of 
the HOLZ lines in the central disc (assuming reason- 
able values for the ionicities) will roughly calibrate 
the three-dimensional beam direction, however, this 
must also be refined for the most accurate work since 
changes in the low-order structure factors cause small 
shifts in the Bragg condition for HOLZ lines. [For 
an analysis of HOLZ-Iine displacements due to multi- 
ple scattering in the ZOLZ, see Bithell & Stobbs 
(1989), Lin, Bird & Vincent (1989) and Zuo (1992)]. 
Absorption parameters are most accurately refined 
using the variation of intensity within the central disc. 
Fig. 3 shows experimental data from MgO systematics 
reflections, recorded both on film and using a photo- 
multiplier and serial energy-loss filter tuned to the 
elastic peak. Fig. 4 compares MgO results with 
dynamical calculations based on (30), after final 
refinement (Zuo & Spence, 1991). 

We now consider the automation of the fitting 
process using a least-squares procedure. Since 
different parts of the rocking curve show different 
sensitivities to different parameters, the entire CBED 
refinement process is best handled by minimizing a 
weighted goodness-of-fit (GoF) index X (Marthinsen, 
H¢ier & Bakken, 1990; Zuo & Spence, 1991), as in 
the Reitvedt method used in neutron diffraction. The 

t 

t 
t 

! t 
' I  

i t 
¢ 

t 

t 
I 

t 

refinement is thus accomplished by finding a 
minimum in X 2 as a function of the adjustable par- 
ameters. We define 

X2= ~__.,f~( clt.~o,-y_ l:,,p)2 
2 (36) 

i o r i  

The experimental CBED intensities are given by l~XP 
and the calculated points [from (30)] by /tihe°ry. The 
f~ is a weight coefficient which can be adjusted to 
increase the importance of certain contributions to 
g 2 which are sensitive to particular parameters. Here, 

2 o'i is the variance of the ith point, which can be 
measured from successive experiments or by using 

2 I exp if Poisson statistics are assumed. Further, c O ' i  = _ i  

is a normalization coefficient, which can be found by 
either normalizing the theory and experiment at a 
particular point or by taking the first-order derivative 
of g 2. This gives 

E, (f,/o-, ~ ~,~''ex"''"°°r" ~, 
c E, (fdo',)',2"'th~°~y'tnc°~Y', (37) 

In a typical initial refinement for a centric crystal 
with, say, three CBED discs (0, g, h), one therefore 
performs a search in five-parameter space if absorp- 
tion and thickness are included. (The zero-order 

• absorption coefficient is not refined since it causes 
only a uniform exponential attenuation of all beams.) 
A separate diagonalization of the structure matrix is 
required for every data point, since each point in the 
rocking curve corresponds to a different incident- 
beam direction. This process must then be repeated 
for every set of parameters. The use of perturbation 
methods to increase computing speed is discussed 
below. 

Since no optimization method can guarantee 
finding a global minimum in g 2, it is necessary to 

I ~, .~ ~ THEOR~ 

Fig. 3. A comparison of the [111] systematics at 120 kV for MgO 
recorded on film (below) with elastic energy filtering (crosses) 
and calculations refined for best fit (continuous line). A photo- 
multiplier and serial energy-loss spectrometer were used. 

Fig. 4. Final refinement of MgO [h00] systematics at 120kV. 
Dynamical calculations (continuous line), experimental data 
(crosses). Their difference is shown below. The Bragg conditions 
are indicated. 
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compare various optimization algorithms. A test of 
several algorithms suggests that the 'simplex' method 
is the most robust, if not the fastest, and has been 
consistently more successful in our work than other 
methods for finding global minima. A Fortran pro- 
gram (REFINE/CB) has been developed for this 
refinement and is available from the author or as part 
of the XTAL X-ray and neutron crystallography 
package (Hall, 1991). This is essentially a combina- 
tion of the Bloch-wave program based on (30) with 
the SIMPLEX least-squares non-linear optimization 
program. The program is described by Zuo & Spence 
(1991). A flow chart is shown in Fig. 5. The optimiz- 
ation routine (subroutine AMOEBA) is discussed 
elsewhere (Press, Flannery, Teukolsky & Vetterling, 
1986). The results for MgO shown in Fig. 4 were 
obtained using this program. The experimental condi- 
tions for this work were as follows: data were collec- 
ted at 120 kV (nominal) from an MgO smoke crystal 
on a Phillips EM400 electron microscope using a 
100nm probe and double-tilt stage to reduce contami- 
nation. The pattern was deflected under computer 

control over the entrance aperture of a Gatan model 
607 serial energy-loss spectrometer (ELS). An energy 
window of 5 eV was used, centered on the elastic 
peak. The ELS entrance aperture size was 1 mm 
(giving an angular resolution of 0.15 mrad) and the 
camera length used was 6500 mm. The LaB6 electron 
source used provided sufficient stability for the collec- 
tion of 200 points, each with a dwell time of 100 ms. 
(Stability is checked by comparing counts at the same 
point before and after the scan.) The zero disc con- 
tained 68 points. The incident-beam direction was 
measured from Kikuchi-line features in the CBED 
pattern recorded on film, and later included in the 
refinement. The method used to define the scan coor- 
dinates is discussed in Zuo & Spence (1991). The 
initial thickness refinement was performed using nine 
systematic beams. Structure factors for neutral atoms 
were used, together with tabulated absorption 
coefficients (Bird & King, 1990). An initial structure- 
factor refinement was performed using nine system- 
atic beams. Five parameters were adjusted - U(200), 
U'(200), U(400), U'(400) and thickness. 126 function 

I REFINE/CB "~ 
Automated structure factor I 

refinement cycle ) 

) 
I Enter crystal data and setup matrix I 

I 

Ug~ 
I 

) 
Read in experimental intensity data / 

) 

t Enter experimental scan coordinates and I 
calculate the incident beam direction 

Define parameters to be refined 

T 
I Calculate Chi-squared fiting index ~ _ ~  

using subroutine chisq2 

~ Find the next parameters I 
using simplex optimization 

subroutine 
I~ True 

I Error analysis and output I 

~ Subroutine 
Chisq2 
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. .) . ) True l 
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~¢ Calculate the change in each 
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Calculate the intensity for 
each beam included in scan 
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I Calculate the intensity at each scan I 
point using quadratic interpolation I 

I alculate chi=squared fitting index l 

) 

(a) (b) 

Fig. 5. (a), (b) Flow chart of the automated refinement program. (a) Main program. (b) Subroutine to evaluate X:. 



242 ELECTRON D I F F R A C T I O N  STRUCTURE-FACTOR AMPLITUDES AND PHASES 

evaluations were required for subroutine A M O E B A  
to reach the minimum, requiring 16 min 43 s processor 
time on a VAX station 3200 computer. The final 
refinement was performed using 33 beams, including 
HOLZ beams, and the same five parameters. A weight 
window was used with f =  1.0 for each point on the 
rocking curve except near the Bragg conditions of 
interest, where the refinement is most sensitive. Here 
f =  20.0. It took 84 function evaluations and a pro- 
cessor time of about 6 h to reach the minimum value 
of X 2 on the VAX 3200 or about 1/4 of this time on 
the newer Silicon Graphics Indigo computer. The final 
results are given below with a discussion of the error 
analysis. Fig. 6 shows contours of equal X 2 in the 
neighborhood of the minimum, plotted as a function 
of U(200) and thickness for simplicity. The path 
chosen by the S I M P L E X  algorithm is also shown for 
this simplified two-parameter  refinement. It was 
found important to restart the S I M P L E X  analysis 
from a different starting point in order to confirm that 
a global minimum had been found. 

The procedure used for the subtraction of the back- 
ground due to inelastic scattering is most important. 
This background consists of  inelastic phonon scatter- 
ing, plasmon scattering and losses due to electronic 
excitations. The use of an electron energy-loss spec- 
trometer to collect only elastically scattered electrons 
(plus those which have excited phonons) consider- 
ably improves the accuracy of the refinement by 
eliminating the direct plasmon and single-electron 
excitation contribution. The removal of most of the 
Kikuchi pattern in two-dimensional elastically 

.0558 U ( 2 0 0 )  A "2 . 0 6 1 5  
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Fig. 6. Contours of constant X 2 in two dimensions. For demonstra- 
tion purposes, a refinement has been completed using only 
thickness and one structure factor as adjustable parameters. The 
path taken by the SIMPLEX algorithm to the minimum is shown 
by the continuous line from S. The contour increment is 104. 

filtered CBED patterns, however, suggests that the 
dominant  contribution to the background is the 
(large-angle) phonon scattering of (large-loss) 
plasmon-loss electrons. Thus, at the thicknesses 
which must be used for CBED work, multiple inelas- 
tic scattering is dominant.  If filtering is not possible, 
densitometer scans taken just outside the CBED discs 
can also be used to estimate this phonon/p lasmon 
diffuse scattering in the systematic case. This must be 
subtracted. Fig. 7(a) compares CBED patterns recor- 
ded with and without energy filtering on the new 
Zeiss EM912 Omega electron microscope (Mayer, 
Spence & Mobus, 1991), which incorporates an imag- 
ing energy-loss spectrometer into the electron-optical 
column. The elastically filtered pattern includes 
phonon-scattered electrons, but excludes those elec- 
trons which have excited plasmons, single-electron 
excitations and multiple combinations of these. The 
improved quality of the filtered data is clear from the 
densitometer traces shown in Fig. 7(c). (Even greater 
dynamic range is obtained using a filter and photo- 
multiplier detector, as in Fig. 4.) Fig. 7(d) shows the 
remarkable amount of additional fine structure seen 
in wide-angle patterns, elastically filtered using the 
Omega filter. 

The use of perturbation methods in the 
• R E F I N E / C B  algorithm can reduce computing times 
dramatically. Most of the computing time (6 h on a 
VAX 3200) in the preceeding refinement was devoted 
to the final search, for which the diagonalization of 
a 33 x 33 complex matrix is required for each of the 
68 data points, and this must be repeated for each of 
the four structure-factor parameters. For bonding and 
atomic-posit ion-parameter studies, the structure 
matrix can be broken up into the sum of a zero-order 
matrix (including excitation errors) Ao and a smaller 
perturbation matrix A' containing the required 
changes in the structure factors due to bonding. The 
essential requirement for an absorption potential, 
however, complicates this somewhat since the matrix 
of eigenvectors is then not unitary. (For an acentric 
crystal with absorption it is neither symmetric nor 
Hermitian.) We assume that the eigenvectors are 
unchanged (Hirsch et al., 1977). The changes in the 
eigenvalues due to a small change AUg in structure 
factors can then be obtained. If we retain only first- 
order terms, the change in the eigenvalues becomes 

2KAy'  = E C~'zlUghCh, .  (38) 
gh 

Chi is the eigenvector matrix of Ao. C~ ~ is the inverse 
matrix of the eigenvector matrix. If the percentage 
change in the structure factor (Ia Ughl/] Ugh[) is smaller 
than a specified tolerance PTOL, then the perturba- 
tion method is used, otherwise the full diagonalization 
is used. The program updates the Ao matrix, its eigen- 
vector matrix and the inverse of the  eigenvector matrix 
if two successive cycles of the optimization routine 
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Fig. 7. (a), (b) Silicon (000) and (220) CBED discs recorded (a) without and (b) with the Zeiss Omega filter. The filter has been set 
to an 8 eV window around the elastic peak. Probe size I00 nm. Sample thickness about 270 nm. Apart from the introduction of the 
~ilter, no other changes were made to the experimental conditions (from Mayer, Spence & Mobus, 1991). (c) Densitometer traces 
taken from Figs. 6(a) and (b) showing the logarithm of the transmitted light intensity on the ordinate. Upper curve is without filter. 
Curve heights have been adjusted for approximately equal maximum optical density. (d) Large-angle CBED pattern (LACBED) 
recorded from the central disc of silicon in the (I I I) orientation using the Zeiss Omega filter at I00 kV. A very small selected-area 
aperture has also been used in a plane approximately conjugate to the source in order to minimize single inelastic phbnon scattering, 
which is not otherwise removed by the filter. (Courtesy of J. Mayer, MPI, Stuttgart.) 
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result in a smaller X 2 and the percentage change in 
the structure factor is larger than PTOL. Tests show 
that computing times are about equal for perturbation 
and diagonalization for a 9-beam refinement, 
however, the time for a 33-beam refinement with 
perturbation is 0.5 h rather than the 6 h required for 
diagonalization. For a noncentrosymmetric crystal, 
the neglect of changes in the eigenvectors may lead 
to significant error, as discussed in § 3.2. This pro- 
cedure cannot therefore be used for the refinement 
of acentric crystals. 

In summary, the automated refinement method 
makes it possible to refine many parameters, such as 
bonding reflections, positional parameters, tem- 
perature factors or lattice spacings for strain measure- 
ment from sub-micrometer regions using dynamical 
HOLZ line shifts (Zuo, 1992). However, the limita- 
tions of this technique have yet to be fully determined 
and difficulties will certainly be experienced with 
larger-unit-cell crystals unless wide-angle methods 
(Eades, 1984) can be used. This may entail some cost 
in probe size. 

Through the weight factor, it should also be pos- 
sible to separate to some extent the effects of the 
parameters on the data since each affects different 
groups of reflections. For example, the effects of 
bonding (which influence low-order reflections) 
might be disentangled from the position parameters, 
which, together with the Debye-Waller factors, affect 
mainly the high-order reflections. 

Error analysis is all important in structure-factor 
refinement, since the effects sought are so small 
(Maslen, 1988). The accuracy of measurements made 
by the CBED method depends on the errors in all 
the parameters - thickness t, Ug (the assumed non- 
refined values), accelerating voltage Eo, electron 
counting noise, absorption coefficients Ug and errors 
in the calibration of the incident-beam direction. In 
addition, it is essential to ensure that a sufficient 
number of beams have been included in the calcula- 
tion, using convergence tests in which the number of 
beams is varied. We now investigate how errors in 
each of these parameters propagate through the 
dynamical scattering theory to affect the intensities. 
By differentiating the two-beam expression, we find 
that 

(aug/ug) 2-- cff a U xg) 2 + (,at/t) 2 + 0.25('a v~ v) 2 

+ C2(AU'g/U~) 2 (39) 

where the values C1--0.0 and C2=0.01 were 
obtained, for example, from computational trials for 
the 004 reflection in GaAs. Equation (39) is still useful 
if one or more parameters are found from other 
sources. For a least-squares fit with parameters ak, 
we have (Bevington, 1969) 

2 Y. o-2,(aa~/aI,) ~. (40) 
O'ak = 

i = 1  

If a minimum in X 2 is found and a parabolic 
expansion around the minimum can be made, the 
standard deviation is found to be (Wolberg, 1967) 

2 
O'a k ~ [ X 2 / ( n  --p)]Ckd. (41) 

Here, C;~ is the kth diagonal term of the inverse 
matrix of C which is defined by 

Ck, = L (fd~)(al i /aak)(al, /aa,)= C,k. (42) 
i = l  

These equations may be used to estimate the stan- 
dard deviation in each parameter. The derivatives in 
(42) may be calculated by first-order perturbation 
theory. As an example, for the MgO refinement dis- 
cussed above, we find, at 120kV and room 
temperature, 

U(200) = 0.05847 (25), 

U'(200) =0.00158 (4), 

U(400) =0.02484 (48), 

U'(400) = 0.00059 (14) A-2, 

t = 808.0 (54) A. 
= j e x p  Here we have used o-2 -i . This assumes that the 

statistics of the electron counting noise are Poisson. 
Experiments to test this assumption suggest that devi- 
ations from Poisson statistics are encountered at large 
count rates when using a photomultiplier and 
scintillator. 

3.2. Solving structures; phase measurement; enantio- 
morphs; polarity 

Attempts to determine unknown crystal structures 
directly by electron diffraction have a long history. 
Early researchers, inspired by the success of the X-ray 
method, attempted to use kinematic scattering theory, 
especially in polycrystalline materials (Vainshtein, 
1964), where it was hoped that dynamical effects 
would 'average out'. For inorganic crystals, consider- 
able preliminary information may be collected in 
order to constrain the search for possible trial struc- 
tures. CBED patterns may then be computed for each 
of these structures for comparison with experimental 
patterns. This preliminary information includes the 
crystal space group, the cell constants and angles and 
the number and type of atoms in the unit cell. Using 
CBED, point diffraction patterns and X-ray micro- 
analysis, much of this information can be obtained, 
although with rather low accuracy. A serious problem 
arises with small crystals in the determination of the 
number of atoms in the cell, since there appears to 
be no way to determine the density of, say, a 10 nm 
crystalline precipitate. Other useful constraints are 
obtained from a table of interatomic bond lengths 
which occur commonly in nature and from atomic- 
resolution lattice images of the same structure. 
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The most comprehensive attack on the problem 
of structure determination by CBED is described by 
Vincent, Bird & Steeds (1984), who successfully deter- 
mined the structure of AuGeAs precipitates at Au- 
Ge-In  contacts on GaAs substrates. Their method 
was as follows. Isostructural crystals were grown and 
both these and the precipitates of interest were 
studied. The space group was determined from the 
symmetry of CBED patterns to be centrosymmetric, 
monoclinic, C 2 / c  (no. 15). Cell constants and angles 
were measured from spot patterns with an accuracy 
of about 0.5% and cell-constant ratios to higher 
accuracy (about 0.1%) using HOLZ lines. The NiP2 
structure, which has similar cell constants, angles and 
space group, was used as an early trial structure. From 
the space group, stoichiometry and likely tetrahedral 
coordination, it was concluded that either all atoms 
occupy separate fourfold sites or two species ran- 
domly occupy the 8(f )  sites, with the third element 
on a fourfold site. The structure is then defined by 
the three positional parameters r--(x,  y, z) defining 
the 8(f)  site containing Ge and As atoms. 

Many possible structures were then eliminated 
using bond-length arguments. Dispersion surfaces 
were then calculated for different values of r, from 
which thickness-independent conclusions could be 
drawn about the width and visibility of HOLZ lines. 
The intensities of HOLZ reflections were then graded 
on a three-point scale and compared with calcula- 
tions. (In thin crystals, because of their long extinction 
distances, the intensities of these reflections are rela- 
tively insensitive to thickness.) Reflections in widely 
differing projections were used, providing a severe 
three-dimensional test of the model. Voltage-depen- 
dent features were sought in the zone-axis orientation 
at which dispersion surfaces cross. The structure was 
finally confirmed to be isostructural with NiP2 and 
PdP2. 

Approaches to generalizing the preceeding 
approach have also been discussed (Vincent, Bird & 
Steeds, 1984). Here, a conditional projected potential 
is introduced which involves a sum over Fourier 
coefficients in only one HOLZ layer. The transverse 
eigenstates can then be treated as atomic-like states, 
following the LCAO method of band theory (Buxton 
& Tremewan, 1980) and labeled accordingly as ls, 2p 
etc. according to symmetry. These states may be either 
bound or free, depending on how their transverse 
eigenenergy compares with the maximum in the inter- 
atomic potential. The aim of this work is to relate the 
intensities of HOLZ lines to modified structure fac- 
tors, perturbed by the strong ZOLZ dynamical inter- 
actions. The choice of zone axes needed to distinguish 
trial structures with different numbers of free param- 
eters is discussed in detail in Vincent et al. (1984) 
and Buxton & Tremewan (1980). The value of using 
HOLZ intensities for structure analysis emerges 
clearly from this work. 

Recent work on structure analysis using the 
dynamical theory applied to point diffraction patterns 
can be found in Avilov et al. (1989), where crystals 
of LiF, PbSe, BiOC1, PbTe and Bi2Se3 are analyzed. 
A review of this work in English can be found in 
Cowley (1992). 

In non-centrosymmetric (acentric) crystals, the 
determination of atomic coordinates requires a 
knowledge of the phases of structure factors. We 
therefore devote the remainder of this section to the 
methods which have been developed for measuring 
the phases of structure factors accurately by electron 
diffraction and to the closely related questions, of 
enantiomorphs and polarity determination. For a 
review of corresponding work based on multiple- 
scattering effects in X-ray diffraction, see Chang 
(1987). [By comparison with X-ray work, electron 
diffraction has achieved much greater accuracy in 
structure-factor phase measurement but, unlike X-ray 
work, has until recently been restricted to small-unit- 
cell crystals, in order to avoid overlap of CBED 
orders. New techniques, such as low-angle conver- 
gent-beam electron diffraction (LACBED) and com- 
bination with lattice imaging may ease this 
restriction.] 

For acentric crystals, we now let Ug be the complex 
electron structure factors (i.e. the Fourier coefficients) 
of the real part of the real-space optical potential and 
Ug those of the imaginary part of the real-space 
optical potential. We note that, from (14), the phase 
of the electron structure factor Ug is not equal to 

x that of the X-ray structure factor Fg, but values 
x c of Fg can be determined from measurements of Ug 

and U~. Since both are the complex Fourier 
coefficients of real real-space potentials, Ug= U~_~ 
and Ug= U'_%. In general, it therefore becomes 
necessary to refine four numbers for each structure 

C ! factor. In order to refine Ug and Ug, it will be found 
necessary in general to use rocking-curve data from 
both the g and - g  reflections. Let U~(Re) and Ug(Im) 
be the real and imaginary parts of the Fourier 
coefficients of the elastic real-space potential in an 
acentric crystal, with similar primed quantities for the 
absorption potential. Then the Fourier coefficients of 
the total complex optical potential obtained from a 
refinement program are 

X (g) = Ug(Re) + iUg(Im) + i{ Ug(Re) + iUg(lm)} 

= { Ug(Re) -  Ug(lm)} + i{ Ug(lm) + Ug(Re)}. 

If the complex value of X ( - g )  can also be deter- 
mined, it is possible by addition and subtraction 
to recover the required values of the complex U~ 
and U' g .  

It is clear that the single-scattering or kinematic 
theory of diffraction does not allow phases to be 
measured nor, since (31) contains only[  c2 Ug[, does 
the two-beam dynamical theory. The phase of U~ 
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depends on the choice of origin in the crystal, but 
Kambe (1957) was able to show that the dynamical 
three-beam intensity depends only on a certain sum 
of the three relevant structure-factor phases, known 
as the three-phase structure invariant qt. Here 

qt = q~h+ q~-g+ q~g-h- (43) 

We note that the reciprocal-lattice vectors form a 
closed triangle and the quanti ty ~b is independent  of 
the choice of origin in the crystal. Following Kambe's  
work, Gj0nnes & H0ier (1971) showed that, in the 
general non-systematics three-beam geometry for 
centric crystals, two special points exist on the hyper- 
bolae defining the three-beam Bragg condition at 
which the intensity is zero due to a degeneracy in the 
eigenvalues. The position of  zero intensity (or of a 
minimum in n-beam theory) indicates immediately 
whether the three-phase invariant is 0 or ~- for centric 
crystals. The position of  this minimum depends also 
on accelerating voltage. Thus, for a centric crystal, it 
may be possible to determine whether the three-phase 
invariant is 0 or rr by inspection of the position of 
the minimum in three-beam CBED patterns (Gj0nnes 
& H0ier, 1971; Hurley & Moodie,  1980). 

For non-centrosymmetric crystals, experimental 
phase measurements have been reported by Bird, 
James & Preston (1987), Ichimiya & Uyeda (1977), 
Zuo, Spence, Downs & Mayer  (1992), Zuo, H0ier & 
Spence (1989), Zuo, Spence & H0ier (1989) and 
others, whose work we now briefly discuss. 

The first attempt to measure low-order structure- 
factor phases experimentally by dynamical electron 
diffraction appears to be that of Ichimiya & Uyeda 
(1977). Here (0002) thickness fringes from a 60 ° 
wedge in CdS were compared with calculations. As 
a result of the many-beam interactions, the intensity 
is sensitively dependent  on structure-factor phase. 
The authors give an error of 0.04 for their measure- 
ment of tan q~ (0002) = -0.54.  

The three-beam non-systematic CBED method 
appears to be the most versatile and general method 
of phase determination, since it requires neither 
wedge-shaped samples nor continuously variable 
electron wavelength, as in critical-voltage methods. 
We assume that only beams 0, g and h are excited. 
The method depends on an analysis of the intensity 
along the hyperbolic lines of maximum intensity in 
three-beam CBED patterns, such as those shown 
experimentally in Fig. 8. On these hyperbolae, the 
incident beam is constrained by the geometry of the 
(dynamical) Bragg condition to move such that 

2KSg = l Ug-b[Z/ 2KSh. (44a) 

The experimental geometry and theory is given in 
detail in Zuo, H¢ier & Spence (1989). The hyperbolae 
are asymptotic to the Bragg lines Sg = 0 and Sh = 0. 
Along the lines of maximum intensity, Kambe's  
approximation may be used to give an expression for 

the intensity: 

ln(Sg) = {(2 KSg)2/[ (2 KSg) 2 + I u~_~l=]} 
xsin  2 {(Trt/K)I U~,~IL 

Here, 

(2KSg) 2 
I u~"l  = I u~l=lu~ll= + (2KSg) 2 

xI(m ) 
- 2KSgIUhl cos qt 

(44b) 

\ 2 KSg I Unl sin ~ . (44c) 

The expression for the intensity of reflection g is 
obtained by interchanging g and h in (44b) and (44c). 
The effective potential here is the same as the Bethe 
potential [(50)] if 2KSg >> ] Ugal, which is the condition 
for the Bethe approximation. The change in excitation 
error measured along the line Sg = Sh across the gap 
is found to be 

ASh = l Ug-hl/ g. (45) 

This equation is the basis of the IKL (intersecting 
Kikuchi line) and IHL (intersecting HOLZ line) 
methods, since it offers a simple method of measuring 
Ug-h. This gap between the lines at the Bragg condi- 
tion has been studied for many years since early work 
on Kikuchi-line patterns by Shinohara (1932). In 
X-ray diffraction it is known as the Renninger effect. 
It is this gap which is measured in the intersecting 
IKL and IHL methods described in § 3.4. 

Fig. 8. Non-systematic three-beam CBED pattern from silicon 
recorded at 100 kV. The two beams at the Bragg condition I = 642 
and h = 620 differ by the 02ft. reflection containing vertical bands. 
The gaps in the intensity along the Bragg hyperbolae in reflec- 
tions I and g can be seen. 
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The position of the maxima and minima of intensity 
along the hyperbolae depend on "e and are given by 
(Zuo, H0ier & Spence, 1989) 

Sh-- 
lUg-hi {IUd I u=l 

4K cos "e lull I ud  

ggl I g d /  - 4  cos 2 (46) 

Thus, the value of the three-phase sum can be deter- 
mined from measurements of the position of the 
minimum. This minimum occurs on the lower hyper- 
bola if cos "e is positive and on the upper branch if 
cos "e is negative. The distance between the maximum 
and the minimum intensities on the three-beam hyper- 
bolae is 

m a x  m i n  d = Sh --Sh 
1 / 2  

- + 4 cos 2 
2K cos "e 

The phase may then be found since 

[d2K2 1) ' /2.  (48) 
,cos , (1 1 - 

The sign of cos "e is indicated by the positions of the 
maxima and minima. Distances measured on film 
must first be converted to excitation errors. Using this 
method, Bird, James & Preston (1987) and Bird & 
James (1988) have measured the 375, 179,204 phase 
triplet in InP to an accuracy of + 15 °. 

A third paper (Zuo, H0ier & Spence, 1989) also 
uses the non-systematic three-beam geometry. For 
CdS, these workers used many-beam calculations to 
match the intensity along lines across the 414 hyper- 
bolae. The 412 reflection was also excited. The result 
of their analysis gives the sum of the phases of these 
electron structure factors, together with that of the 
00,2, to be 49.6 (5) °. Data were recorded on film and 
read into a computer for comparison with dynamical 
calculations. Allowance must be made for the 
logarithmic response of the film (Valentine, 1966). 
The background was accounted for by convoluting 
the computed intensity with a model distribution for 
inelastic scattering. If it were assumed that two of 
these phases_were known exactly, the error in the 
remaining 002 X-ray structure factor was found to be 
+0.75 ° . 

The fourth case concerns measurements made in 
the systematic orientation, based on a similar prin- 
ciple to that of the critical-voltage method, but exten- 
ded to non-centrosymmetric crystals (Zuo, Spence & 
H0ier, 1989). The principle of the method is as fol- 
lows. As in the critical-voltage method, we consider 
a second-order reflection g at the Bragg angle in an 
acentric crystal. For a certain range of accelerating 
voltage, the perturbation to the rocking curve for the 
second-order reflection g due to the unavoidable weak 

excitation of the first-order reflection h is shown below 
to be very sensitive to the sum of the phases of the 
two relevant structure factors. (Excitation of the third- 
order beam is much weaker.) By comparison of the 
second-order beam's rocking curve with the results 
of many-beam calculations (including non-systematic 
interactions for increased accuracy), the phase sum 
may be found. Bethe's perturbation method may be 
used to analyze the method. With structure-factor 
phases q~g, the three-phase invariant for the 00h sys- 
tematic in CdS becomes 

"e = - ~ g  + ~ .  + ~g-. = -~,(ooa)+ ~,(oo~)+ ,p (oo~_) 
= 2~ (002.) - q~(00a,). (49) 

Unlike the non-systematics three-beam case, only 
two phases are now involved. The rocking-curve 
intensity observed in a CBED disc is given by (31) 
with Ug replaced by an effective structure factor 

I Ug"( B)I 2 = I u.I = { 1 I vdlv~_d 
K&I u~l cos  ,I, 

2K&Iu=I/ J (50) 
to take account of the perturbation due to the third 
beam. The intensity now depends on "e. A plot of 
Ug /Ugl for various values of the phase "e may be 

made. This shows that I u~"l is most sensitive to 
changes in "e near its minimum 

]uhllu~-.l l U;"( 
B)I], =lsin'el for 2K&=lU=lcos'e l Ugl J m,° 

(51)  

Thus, to obtain sensitivity to phase in disc g near 
S= = 0, we require Sh to satisfy the (material-depen- 
dent) constant of (51). We now use a similar argument 
to that used for the critical voltage. If Sg = 0 then the 
Ewald-sphere geometry requires 2KSh=h 2 in (51). 
Using the definition of Ug to solve for 3' and the 
expression Eo = moc2(3' - 1)/lel for accelerating vol- 
tage, we find the accelerating voltage 

mo c2 EA--'el <~2) 
F/ l 

Vhl l V~-hl2molel/ 
where hp is Planck's constant and h is a reciprocal- 
lattice vector. This equation reduces to an approxi- 
mate form of the critical-voltage formula for "e = 0 
or rr (for centric crystals). The critical voltage corre- 
sponds to a choice of Eo which makes I U~"(B)I = 0. 
Here we have extended the theory to acentric crystals 
and found the voltage Eo at which, for a given phase, 
U~ fr is a minimum near Sg= 0, and therefore most 
sensitive to phase. Since, however, the excitation error 
Sh is used as a variable in CBED experiments, the 
choice of accelerating voltage is no longer critical. 
Unlike the critical-voltage method (which is restricted 
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to centric crystals), this method also allows indepen- 
dent refinement of several reflections, rather than 
giving a relationship between structure-factor ampli- 
tudes. 

As an example, for CdS, with g = 0074 and h = 002, 
IU,1=0.0577, IUg]=0.0142 and ~ = 5 5 . 3 3 2  ° for 
neutral atoms (room temperature, Eo= 120kV). 
Then, at Sg = 0, a 1 ° change in gr leads to a 1% relative 
change in U(0074) err. This produces a readily detect- 
able change in Ig._Equation (51) also shows how 
insensitive the 004 intensity is to IU(0074) I and 
how sensitive it is to [ U(002) I. Thus (and in view of 
the relatively large size of g), the use of scattering 
factors for neutral atoms (rather than ions) is a good 
approximation for I u(00~)l. Based on this approach, 
but using many-beam computations for greater 
accuracy, Zuo, Spence & H~ier (1989) were able to 
refine ~ for CdS from experimental CBED data, 
using the 0074 rocking curve. For the best fit it was 
found that 

~ = 5 4 . 4 ( 9 )  °. 

The error is obtained f rom a quadrature sum of  
the phase changes due to errors in intensity measure- 
ment, the measured I Ugl,absorption factors and thick- 
ness. If we assume ~(004) = 2.94 ° (known), the corre- 
sponding error in the deduced X-ray structure-factor 
phase ~x(002) is +0.069 °. 

It is possible to convert these errors in the measure- 
ment of structure-factor phases to changes in atomic- 
position parameter if a degree of ionicity can be 
assumed. For CdS (a one-parameter structure), the 
preceding error makes it possible to determine the 
dimensionless atomic-position parameter to within 
about +0.0005. These ionicity and atomic-coordinate 
effects might be disentangled from a series of patterns 
emphasizing different orders. For example, we find 
that the 004 structure-factor phase is very sensitive 
to the position parameter u, whereas the phase of the 
002 depends more strongly on bonding. 

As a final example of structure-factor phase 
measurement, the 002 reflection in the non- 
centrosymmetric BeO crystal structure has been 
measured (Zuo, Spence, Downs & Mayer, 1993). BeO 
has the wurtzite structure, space group P63mc, with 
cell parameters a = 2.6979 (2) and c = 4.3772 (2) A 
(Downs, Ross & Gibbs, 1985). The z parameter used 
was 0.3775. We choose an origin at the lighter Be 
atom. The polarity of the crystal was defined such 
that a vector drawn from Be to O is the positive [00.1] 
direction. 

This example shows how the automated refinement 
techniques described in § 3.1 may be applied to acen- 
tric structures to determine individual phases (with 
respect to a specified origin) rather than phase sums. 
We will also see how the same values of the structure.. 
factors are obtained after analyzing crystals of 
different thicknesses. In this work, the origin was 

taken at the Be-atom site. Zero-loss filtered data were 
recorded at 80 kV using a serial ELS system fitted 
with a photomultiplier. Line scans were taken along 
the [00hi systematics near the [730] zone. As shown 
in Fig. 9(a),  it was possible to obtain both the 002 
and 004 Bragg conditions in the central disc, and this 
condition was used for refinement of the U(200) 
amplitude [ U(200)I, the U(200) phase and the ampli- 
tude of the absorption coefficient I U'(002)]. Fig. 9(b) 
shows similar data taken from a different thickness 
of the same crystal. The refinement of the phase of 
U'(200) was made using an axial orientation (not 

XlO 3 

4 O0 

i : , 

3 2O 

t~ 

1 60 uJ 

s_ 
• i 

, 

, I ' ? 

~ i~ . . . . . .  ^~"  ~ "  - - ~ -L~ -  - 

[ i' '1 " 
(000) (002) (0041 

(a) 

XlO 3 

2 50 

2 O0 

~ 1 5 0  8 
~ 1 0 0  
w 

A 

I i ii 

10001 (0021 10041 

(b) 

Fig. 9. BeO at two thicknesses. (a) Zero-loss experimental and 
computed CBED intensity along [002] in the central disc for 
BeO at 80 kV. The 002 and 004 Bragg conditions are indicated. 
The orientation is near the [130] zone axis. Refined sample 
thickness t = 70.929 nm. The plot below shows the difference 
between calculation and experiment. (b) Similar to Fig. 7(a) 
but recorded from a different thickness, found after refinement 
to be t = 106.03 nm. The close agreement between the structure 
factors retrieved from these two figures gives confidence in the 
method. 
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shown), in which both the 002 and 002 reflections 
were obtained at their Bragg conditions in a single 
CBED recording. Here, use is made of the fact that 
the difference in the intensity of the g and - g  reflec- 
tions in an acentric crystal is sensitive to the difference 
between the phases of the structure factors of the 
elastic and absorption potentials (Bird, James & King, 
1989). 

The data in Fig. 9 are shown compared with the 
results of many-beam Bloch-wave calculations. The 
calibration of the incident-beam coordinates and the 
determination of the center of the 000 disc are im- 
portant in this work and these must be treated 
as refinement parameters in the REFINE/CB 
algorithm. Initial estimates were based on micro- 
graphs (two-dimensional data) taken with the scans, 
since these allow both components of the incident 
wave vector K, in the ZOLZ to be determined. In 
particular, the x component of K,, the center of the 
000 disc and the thickness were refined together 
initially (refinement 1). About 20 search steps were 
needed to minimize X 2. With these values, a further 
seven-beam refinement was made of thickness, 
Iu(002)l, ~o(002), Iu'(002)l and ~o'(002) (refinement 
2). These two refinements were then repeated until 
A,2=5.04. At this p o i n t ,  we have t=709.1 A, 
I U(00.2)I = 0.039230 A -2, ~o(00.2) = -0.89719 rad, 
I u'(002)l = 0.000755 A -z, ~o'(002) = -0.62 rad and 
I g'(00.4)l = 0.000159/~-2. A further reduction in X 2 
was then obtained by measuring the y component of 
K, from micrographs, in order to include off-system- 
atic reflections more accurately. The refinement was 
then continued (refinement 3) using 124-beam calcu- 
lations (to include all reflections visible on the micro- 
graphs) and treating the complex U(00.2), U'(00.2), 
I g'(004)l and t as adjustable parameters. Refinement 
3 was then restarted, to confirm that a global minimum 
had been found. (This procedure is essential with the 
SIMPLEX algorithm.) This final refinement was done 
using 124 dynamically interacting beams, amongst 
which the 19 strong beams with small excitation errors 
were treated by exact matrix diagonalization, while 
the remainder of the weak beams were treated using 
the Bethe perturbation potential. The Debye-Waller  
factors used in this work were BBe=0.355 and 
Bo = 0.28. 

For the measurement of the absorption phase 
~o'(002), an axial 000 rocking curve was used. The 
acentric nature of the crystalwas seen in the different 
heights of the 002 and 002 Bragg peaks obtained 
simultaneously in this pattern. Thus they are correctly 
normalized since they both occur within the 000 disc. 
A comparison with computations then allowed the 
polarity of the crystal and the absolute indexing of 
the pattern to be determined. The refinement of this 
pattern followed, using now ~o'(002) and thickness as 
refinement parameters, together with the values of 
U(002) and I U'(002)[ obtained previously. The final 

values obtained at 80 kV, with X 2= 5.04, were 

1u(002)1=0.039592 (14) A z, 

~o(002) = -0.8847 (170) rad, 

I u'(002)l =0.00073 (6) ~-2,  

~o'(002) = -1.1 (5) rad, 

I U'(004)[ = 0.0002 (1)/~-2, 

t = 7 1 1 . 6  (16) ~ .  

Finally, the last refinement was repeated with a 
slightly different starting point, and the minimum'thus 
confirmed to be unique. The polarity of the crystal 
was confirmed by repeating the analysis with every g 
replaced by - g  in the computations. It should be 
noted that this reversal of polarity was found to 
increase X 2 to about 20. 

Considerable confidence in the method is given by 
comparing these values with those refined from Fig. 
9(b), which shows data from the same crystal at a 
different thickness. The refinements from this figure 
give 

] U(002)I = 0.03982 (13)/~-2, 

~o(002) = - 0 . 8 7 8 6  (170) rad, 

I u'(002)l =0.00090 (7) £-2 ,  

~o'(002) = -0 .4  (5) rad, 

I u'(004)l = 0.00004 (10) ~-2,  

t =  1059.7 (20)/~. 

These fall within the errors of the previous analysis. 
The corresponding value of the X-ray structure- 
factor phase is obtained from (22) as ~ox(00.2)= 
-1.1900 (9) rad, corresponding to an accuracy of bet- 
ter than 0.1%. This may be the most accurate phase 
measurement yet reported by any method. 

Reversing the sign of the phase of the plane wave 
representing the incident electron beam would reverse 
the sign of ~0(002), and this must be considered 
(together with the choice of origin) when comparing 
this work with results from other researchers. 

A different group of techniques has been developed 
based on the straightforward measurement of the 
intensity of many high-order reflections, both in the 
ZOLZ and the HOLZ (Kolby & TaftO, 1991; Ma, 
Gjonnes & Taft0, 1991; Tomokiyo & Kuroiwa, 1990). 
In particular, the slight rotation of the oxygen 
octahedra which occurs during the phase transition 
in SrTiO3 has been studied by Tanaka & Tsuda (1990), 
who use direct measurement of HOLZ reflections and 
comparisons with dynamical computations. Using a 
similar refinement technique, they were able to deter- 
mine this rotation to within an accuracy of about 0.2 ° . 

The 'handedness '  or chirality of a crystal can be 
determined by analysis of CBED intensities. Space 
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groups differing in this way are known as enan- 
tiomorphs and are mirror images of one another. Note 
that two enantiomorphs may have either the same 
(e.g. point group 1) or different symmetry (as in the 
case of quartz). Applications of CBED for this pur- 
pose are described by Goodman & Johnson (1977) 
(for quartz) and for MnSi by Tanaka & Terauchi 
(1985). In both cases, the absolute orientation can be 
determined. The topic is also discussed by Vincent, 
Krause & Steeds (1986). 

The effect of enantiomorphism on dynamical 
intensities has been analyzed by Marthinsen & H0ier 
(1989). It can be understood by noting that any odd 
number of mirror operations reverses handedness and 
that three mirrors are equivalent to a center of inver- 
sion. The effect of replacing r by - r  in the general 
expression for dynamical intensity may be understood 
by writing (30) as 

Ih(t) = E I r "* r " l  "Jo "-'hi -F2 ~ ]Co *rir- ' jrj*l ~-~ h ~'--~ 0 I--~ h [ 
i i > j  

x cos [+27r(7, - 3,j)' + au], (53) 

where a u is the phase of C~ *r-'i ~Jc-~. • --h'--0"-'h • The replace- 
ment of r by - r  leaves the eigenvalues unaffected but 
conjugates all the eigenvectors. This reverses the sign 
of au, which can lead to large intensity differences 
between the two crystals in CBED patterns along 
Bragg lines. 

In three-beam theory, the effect of enantiomor- 
phism is to reverse the phase of the three-phase 
invariant. From the three-beam expression (44c), we 
see that this does not lead to an observable effect 
within either the Bethe or Kambe approximations, 
unlike the exact three-beam solution (Marthinsen & 
H~ier, 1989). In the wurtzite structure, the application 
of a mirror operation (or a twofold axis) reverses the 
polarity of the structure and we have seen above with 
BeO that the use of the incorrect polarity gave a much 
poorer refinement. 

The effect of reversing the phase of the incident 
plane wave is to reverse both the sign of a u and the 
plus sign before the term 27r(yi-  yj) in (53), so that 
the same intensity distribution is predicted from the 
same crystal, regardless of the plane-wave sign 
convention. 

A simple CBED method, based on few-beam inter- 
actions, for determining the polarity of crystals with 
the sphalerite structure has been desGribed by Taft¢ 
& Spence (1982). A second class of methods for 
determining polarity depends on asymmetries intro- 
duced into two-beam theory by absorption. If absorp- 
tion is included exactly (not using perturbation 
theory), then small differences appear between the g 
and - g  rocking curves in two-beam theory. These are 
responsible for asymmetries in Kikuchi lines (Allen 
& Rossouw, 1989; Bird, 1990; Bird & Wright, 1989) 
and on inner-shell energy-loss spectra (Tafto, 1987), 
both of which may also be used to determine the 

polarity of acentric crystals. (Energy 'absorbed' by 
inelastic processes from the elastic 'channel' makes 
a positive contribution to peaks in the energy-loss 
spectrum.) 

3.3. Critical voltages 
In its simplest form, the critical-voltage effect con- 

sists in the observation of a minimum of intensity in 
a second-order reflection at the Bragg condition for 
a particular accelerating voltage. This voltage 
depends sensitively on the ratio of the first- to second- 
order structure factors, and so may be used to measure 
this ratio with high precision from measurements of 
the critical accelerating voltage. If the second-order 
reflection is assumed to depend mainly on the known 
atomic coordinates, the first-order reflection, which 
is more sensitive to bonding effects, may be found 
with high precision. Accuracy is often ultimately 
limited by knowledge of the Debye-Waller factor for 
the high-order reflections and the contrast of the 
intensity minimum. Introductory reviews of the 
theory may be found in Cowley (1981), Humphreys 
(1979) and Reimer (1984). The first observations of 
the critical-voltage effect were made by Nagata & 
Fukuhara (1967), Uyeda (1968) and Watenabe, 
Uyeda & Kogiso (1968). The critical-voltage (CV) 
method is generally regarded as the most accurate 
method of structure-factor measurement by electron 
diffraction. What is usually measured is the ratio of 
the magnitude of the first-order structure factor Uh 
to that of the second-order reflection U2h and the 
method requires an electron microscope whose 
accelerating voltage may be continuously varied over 
a large range, typically from 100 kV to 1 MeV. The 
field has recently been reviewed by Fox & Fisher 
(1988b). 

The effect may be understood using either three- 
beam theory, based on the Bethe potentials (Uyeda, 
1968), or from a (related) two-Bloch-wave picture 
(Lally, Humphreys, Metherell & Fisher, 1972). For 
example, the effective potential of (50) may be used 
in the two-beam expression (31) and the value of 
7 = [ 1 - ( v / c ) 2 ]  -1/2 (and hence the accelerating vol- 
tage) found for which the effective potential is zero. 
For the centric crystals usually studied, gr _-0 or ~r. 
The three-beam diffracted intensity is then zero for 
all specimen thicknesses. Alternatively, the exact 
solution of the symmetric three-beam case may be 
used. The critical-voltage effect then occurs at the 
eigenvalue degeneracy y~= ~/3. This condition is 
satisfied at the three-beam critical voltage 

moc2 I h 2 g 21ei V2h ] 
E c -  le I 2molel2(V~- V]h)-- 1 . (54) 

A critical voltage does not occur if V~ < V~h. In the 
general many-beam case, this destructive interference 
between two Bloch waves for one particular beam 
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occurs when any two eigenvalues yJ of the structure 
matrix A become degenerate for a particular voltage 
E0. The symmetries of the two Bloch waves also 
interchange as Eo passes through Ec. The problem 
has been analyzed in detail in the three-beam approxi- 
mation for acentric crystals (Marthinsen, Matsuhata, 
H0ier & Gj0nnes, 1988). 

The effects of accidental degeneracies in the eigen- 
values has also been observed in the axial orientation 
by Matsuhata & Steeds (1987) at more conveniently 
lower voltages (see also Buxton & Loveluck, 1977). 
The effect may consist of a bright spot in the central 
disc of a zone-axis CBED pattern, or of a reversal of 
symmetry in the other orders. Five- and seven-beam 
closed-form solutions (reducible by symmetry) are 
used to analyze these results, together with many- 
beam calculations. Corresponding effects are found 
in the HOLZ reflections. 

It was realized at an early stage that, since (50) 
contains the product ]KISg, minima can be expected 
in CBED patterns for particular excitation errors at 
voltages other than Ec (which determines the wave 
vector [KI). An error in choosing Ec may be com- 
pensated for by changing Sg, i.e. by looking at a 
different point in the CBED pattern. This is the basis 
of the intersecting Kikuchi-line (IKL) method 
described in § 3.4, which might therefore be said to 
provide 'critical voltage at any voltage' (Taft0 & 
Gj0nnes, 1985). It is also the basis of the 'CBED 
critical voltage' method of Sellar et al. (1980). In this 
work, the temperature of the sample (and hence the 
Debye-Waller factor) was used for fine-tuning the 
critical-voltage condition. In general, degeneracies 
may be identified for certain combinations of excita- 
tion error and accelerating voltage by solving, in 
closed form, the few-beam dispersion equations. 
These solutions have now been given for many 
orientations of high symmetry (Fukahara, 1966). 
Intensity minima can therefore be found in many 
orientations of high symmetry, as analyzed in detail 
by Buxton & Loveluck (1977). The near extinction 
of a third-order systematic reflection is discussed by 
Hewat & Humphreys (1974). 

In practice, by varying Eo, the experimentalist seeks 
the disappearance of the KJkuchi line associated with 
the satisfied Bragg beam (Thomas, Shirley, Lally & 
Fisher, 1974) or the central maximum of a dark-field 
bend contour (Lally et al., 1972) or that of the central 
maximum of the rocking curve displayed in a CBED 
disc in the CBEDCV method (Sellar et al., 1980). 
Many-beam dynamical calculations are then per- 
formed, in which the two lowest-order structure fac- 
tors are adjusted to give a minimum of intensity in 
the second-order (satisfied) reflection for the 
observed value of Ec. Absorption coefficients must 
be known. 

Table 2 contains a summary of measurements of 
structure factors made by the critical-voltage (and 

other) methods. Readers must be cautioned against 
comparing values recorded at different temperatures. 
Errors may be as small as 0.4% in the measured fj 
values for Si(111) (Hewat & Humphreys, 1974), cor- 
responding to an error of 0.11% in the corresponding 
X-ray scattering factor. 

3.4. The intersecting Kikuchi- l ine and H OLZ- l i ne  
methods 

The critical-voltage method has the important 
advantage of being a 'null '  method, in which a 
minimum of intensity is sought. Most electron diffrac- 
tion methods depend on the direct measurement of 
electron intensities and their comparison with calcu- 
lations. The intersecting Kikuchi-line (IKL) method 
is unusual in that it allows structure factors to be 
determined simply from the distance between features 
measured on a photographic plate. This distance is 
the width of the gap which appears when Kikuchi 
lines (or HOLZ lines) cross. We shall therefore also 
refer to the intersecting HOLZ-line (IHL) method. 

Instead of following the geometric locus defined 
by the kinematic Bragg condition (Sg=0),  HOLZ 
lines separate where they cross. The resulting gap 
between the lines at the three-beam Bragg condition 
has been studied for many years since the first work 
of Shinohara (1932) on Kikuchi-line patterns. In X- 
ray diffraction, it is known as the Renninger effect. 
It is this gap which is measured in the IKL and related 
methods. 

The situation can be analyzed with the aid of the 
three-beam dynamical theory for acentric crystals 
(Spence & Zuo, 1992). The gap (measured along the 
line Sg-- Sh) between the hyperbolae defined by (44) 
is given by (45), and hence the structure factor Ug-h 
can be obtained from a measurement of the gap. 

The preceding results apply to elastic Bragg scat- 
tering. Similar gaps are seen in Kikuchi-line patterns. 
The assumption is made that the inelastic scattering 
responsible for Kikuchi lines is generated con- 
tinuously throughout the crystal, and so can be 
described by an integration over thickness. This does 
not alter the expression for the gap. 

A deeper understanding of both the critical-voltage 
and the closely related IKL methods can be obtained 
by plotting out the relevant many-beam dispersion 
surfaces for a range of incident-beam directions and 
accelerating voltages. The eigenvalues yi then 
describe the deviation of these surfaces from 
asymptotic spheres of radius [KI erected about each 
reciprocal-lattice point. This deviation is greatest near 
Bragg conditions. The surfaces may touch at certain 
accelerating voltages and orientations, giving rise to 
the CV and IKL effects. In three dimensions, the form 
of these surfaces can be very complicated. 

The IKL and IHL techniques are simple to apply. 
However, the finding of suitable cases showing a clear 
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splitting unperturbed by other interactions at a con- 
venient accelerating voltage is somewhat fortuitous, 
since a search through all possible diffraction condi- 
tions is rarely practical. The method is thus simpler 
and more flexible (if applicable) but less accurate 
than the critical-voltage method. An instructive case 
of high symmetry in which only one excitation error 
is varied is given by Taft0 & Gj0nnes (1985), applied 
to SiC. Other applications of the method can be found 
as follows: the concentration of V atoms at interstitial 
tetrahedral sites in vanadium oxide above the order- 
ing temperature has been determined using structure- 
factor measurements based on the IKL technique by 
H0ier & Andersson (1974). Structure factors for Cu 
and Cu3Au have been measured using this method 
by Matsuhata,  Tomokiyo, Watanabe & Eguchi (1984). 
Structure factors in silicon have also been measured 
by the IKL technique by Terasaki et al. (1979). The 
displacement of Kikuchi lines near intersections can 
also be understood using this approach (H0ier, 1972). 

3.5. Weak  high-order reflections 

Wide-angle methods which allow either kinematic 
or two-beam analysis of weak high-order reflections 
have been developed by Vincent & Bird (1986) and 
Taft0 & Metzger (1985). We considerfirst the method 
of Taft0 & Metzger. Consider a systematic row of 
reflections. The method depends on the fact that, 
because the extinction distances are large for high- 
order reflections, these reflections have very narrow 
rocking curves and, if the specimen thickness is much 
less than the extinction distance, may be described 
to a good approximation by two-beam or kinematic 
theory. The use of a systematic row also minimizes 
off-row dynamical interactions. In their study of a 
static displacement modulation in V2D, Taft0 & 
Metzger used a beam divergence many times greater 
than the first-order Bragg angle. Thus, many beams 
are simultaneously observed at the Bragg condition. 
But the beam divergence used is less than the Bragg 
angle for the high-order beams (e.g. 11,0,0) of interest. 
Thus, while the direct beam does not overlap with 
these beams, they do overlap amongst themselves. 
However, the contribution of an adjacent beam to 
one at the Bragg condition is small, since its excitation 
error is large. By comparing these sharp high-order 
systematic reflection intensities with kinematic calcu- 
lations, Taft0 & Metzger were able to measure the 
static modulation of the lattice as 0.0070 (5)nm. In 
a second application of the same method, Kolby & 
TaftÙ (1991) used high-order 001 reflections (l = 8 to 
70) in intermetallic AI~ITi4Zn to refine the atomic 
displacements of the A1 and Ti atoms. An accuracy 
in the fractional coordinate of 0.006 (2) was achieved. 
The method has also been applied to the refinement 
of atom positions in A13Zr (Ma et al., 1991). A third 
example of this approach is provided by the work of 

Boe & Gj0nnes (1991), who compared the high-order 
001 systematics in YBa2Cu3OT_x with calculations for 
three different models of oxygen ordering. 

If the incident-beam direction is scanned electroni- 
cally, it is possible to obtain an expanded angular 
view of the outer HOLZ lines (Kondo, lto & Harada, 
1984). It is also possible to obtain similar information 
without scanning from zone-axis patterns formed 
using an illumination semiangle equal to the angular 
radius t~a of the first-order Laue zone (Vincent & Bird, 
1986). Consider the effect of increasing the illumina- 
tion semiangle 0c on the ZOLZ and FOLZ reflections. 
The effect is to open up an annular band of FOLZ 
lines, centered around those which appear at the zone 
axis. At the same time, the ZOLZ becomes filled with 
a continuous distribution of bright overlapping 
orders. The use of Oc = al is shown to be an optimum 
condition, which prevents the zero-layer reflections 
from overlapping with the HOLZ, while also prevent- 
ing overlap between reflections in different HOLZ. 
All electrons diffracted by planes in layer n of the 
reciprocal lattice are confined to an annulus whose 
inner and outer radii are a ,  and a,+l .  Again, advan- 
tage is taken of the fact that the rocking curve for 
HOLZ reflections is very narrow owing to the steep 
inclination of the Ewald sphere as it crosses HOLZ 
lattice points. Thus, although different reflections in 
the same HOLZ overlap geometrically, the intensity 
contribution from neighboring reflections is negli- 
gible. (If orders overlap there is an intensity contribu- 
tion to one point in the diffraction pattern from two 
different points within the illumination aperture, via 
different Bragg scattering paths.) In this case, one of 
the Bragg paths into the HOLZ from the source makes 
a negligible contribution because its excitation error 
is large and the lines are narrow due to the curvature 
of the Ewaid sphere. Independently of this overlap 
effect, dynamical scattering between all the reflections 
normally occurs. The intensities of these lines, 
however, in the case of the silicon [114] pattern at 
300 kV, are found to agree closely with electron struc- 
ture factors, suggesting that a kinematic analysis of 
these intensities may be possible at some point along 
their length. The good fit may also be related to the 
use of a sparse (low-symmetry) zone, in which 
dynamical interactions are minimized. 

4. The inversion problem 

The inversion problem refers to the problem of finding 
values of Ug directly from measurements of the 
dynamical beam intensities, rather than by refinement 
based on forward computations. Two approaches 
have been made to this generally unsolved problem 
- firstly, based on closed-form inversion of few-beam 
solutions and, secondly, computational strategies in 
which algorithms are devised which might be shown 
to converge uniquely. 
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An analytical approach is given by Moodie (1979) 
for the three-beam case. Here, closed-form 
expressions are given for the retrieval of the three 
structure-factor amplitudes and the three-phase 
invariant from the positions of certain lines in a 
three-beam CBED pattern along which the intensity 
has two-beam form. 

Several computational schemes have been tested 
in unpublished work by Spence & Katz (1979) (see 
also Speer, Spence & Ihrig, 1990). We write the scat- 
tering matrix defined following (29) in the form S = 
exp (27fiAt) for a centrosymmetric crystal without 
absorption. The problem then reduces to that of 
finding the entries Ug-h of the structure matrix A from 
a knowledge of the moduli of the entries in one 
column of S. We assume that the diagonal of A (the 
excitation errors), accelerating voltage and thickness 
only are known. Two cases might be considered: one 
in which the complex entries of one column of S have 
been determined [by interferometric methods, for 
example using a biprism in STEM (Cowley, 1991) or 
using coherent overlapping CBED orders (Spence, 
1978)]; and one in which only the moduli of the 
elements are known. These data may be recorded as 
a function of thickness, orientation and accelerating 
voltage. The following general comments may be 
made for centric crystals without absorption: 

1. The question of uniqueness arises. Let S =  
exp (27fiAt) = exp (27riBt). Then uniqueness is estab- 
lished by showing that A - B  = 0. Since A and B are 
self-adjoint and diagonalized by the same eigenvec- 
tors, they commute and hence e x p [ 2 ~ - i ( A - B ) t ] =  
SS -~= I for all t. This is only possible if A = B and 
the inversion is thus unique if data are used for a 
range of thickness. (If it were not, in principle, two 
different structures could give rise to the same diffrac- 
tion pattern. Then the inversion problem is not well 
posed.) 

2. The eigenvalues of S are hi =exp (27ri%t)= 
r exp (iOi). Hence, 

27riyit = In hi = In r + i(0i + 2nilr) 

gives 3' in terms of A if the ni are known, otherwise 
the inversion is not unique. If complex S can be found 
at several thicknesses (or non-relativistic wave- 
lengths), the eigenvalues of A can then be found from 
the period in thickness 1/% of the real part of A~. 
The eigenvectors of S are those of A. Hence A can 
be found from S(t). 

3. Many other physical constraints may be placed 
on the retrieval process and use can be made of other 
properties of the matrices (e.g. the trace of A, related 
to the determinant of S, is known etc.). So far, 
however, all these computational approaches to the 
inversion problem have foundered on the difficulty 
of reconstructing all of S from a knowledge of some 
of its entries. 

The use of the difference between data recorded at 
two slightly different accelerating voltages has also 
been considered (Spence & Katz, 1979). In the non- 
relativistic regime in zone-axis orientations, the 
dynamical theory contains only the product At, so 
that a small change in thickness t is equivalent to a 
small change in wavelength. A kinematic analysis 
might then be used if the data consisted of complex 
amplitudes. 

5. The mean inner potential 

A simple relationship has been shown to exist between 
the mean inner potential V0 and the diamagnetic 
susceptibility (Miyake, 1940). For a monoatomic crys- 
tal consisting of atoms on lattice sites i with unit-cell 
volume J2, the Fourier coefficients Vg of potential in 
SI units are 

Vg= g2-' ~ f e ( g )  exp (-2-n'ig • r) 
i 

( el ) ~ [ Z - f ~ ' ( g ) ]  
- 47r2--~og-2 ' . g2 exp (-27rig- r). (55) 

Since we require the value of this expression for g = 0, 
the Debye-Waller factor is neglected. For spherically 
symmetric atoms, the X-ray scattering factor is 

f ( sin27rgr~r2 
fX(g) =4-n" p(r)\ -2~gr ] dr. (56) 

For Vo, we consider the limiting form offX(g) for 
small g. Expanding sin x/x, we have 

where 

[Z-fX(g)]lg 2= T1, 

T1 = g - 2 [ Z - 4 7 r  ~ p(r)r 2 d r +  (47r/3) 

x~p(r)r2(47r2g 2r 2) d r - . . .  ]. 

The second term is Z, the number of atomic elec- 
trons. Hence, 

T1 = (4"rr2/3) j" p(r)rZ(4"n'r 2) dr 
= (47rZ/3) ~ p(r, O, q~)r 2 dr  

= (4zr2/3) ~ (krZ4~ * dr  

= (4zrZ/3)(r2), (57) 

where 4~ are the wave functions of the atomic orbitals 
in the rigid-ion approximation. Thus, 

[elno le[N(r z) 
V° = 3--O-~eo <r2)- 3 e ~ '  (58) 

where no is the number of atoms per cell, N is the 
number per unit volume and (r 2) is the mean-square 
radius of the atom. 

Now the diamagnetic susceptibility per unit volume 
is, in dimensionless SI units, given by Langevin's 
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Table 1. Mean inner potentials Vo measured by electron diffraction 

Result  
Crystal  Me thod  (V) Reference  

Ag Biprism 20.7 Buhl (1959) 
Biprism 17.0 Keller (1961 ) 

A1 Biprism 13.0 Keller ( 1961 ) 
Biprism 12.4 Hoffmann & J6nsson (1965) 
Biprism 11.9 Buhl (1959) 

Au Biprism 21.1 Buhl (1959) 
Biprism 22.1-27.0 Keller (1961) 

Be Biprism 7.8 JSnsson, Hoffmann & M611enstedt (1965) 
Chrysotile Electron interference 11.5 Yada, Shibata & Hibi (1973) 
C Biprism 7.8 Keller (1961) 
Cu Biprism 23.5 Keller (1961) 

Biprism 2 0 . 1  Hoffmann & JSnsson (1965) 
GaAs RHEED 1 3 . 2  Yamamoto & Spence (1983) 
GaP RHEED 1 2 . 2  Yamamoto & Spence (1983) 
Ge Biprism 1 5 . 6  Hoffmann & J~nsson (1965) 
MgO Electron diffraction 13.7 Sturkey (1948) 

Electron diffraction 16 Honjo & Mihama (1954) 
Electron diffraction 15.3 Moli~re & Niehrs (1955) 
Electron diffraction 13.4 Miyake (1962) 
Electron diffraction 12.3 Tomita & Savelli (1968) 
Electron diffraction 14.0 Yada et al. (1973) 

Si Biprism 11.5 Gaukler & Graft (1970) 
Biprism 9.3 Gajdardziska-Josifovska et al. (1992) 

W Biprism 23.4 Gaukler & Graft (1970) 
ZnS Biprism 10.2 Buhl (1959) 

atomic theory for gases as 

X = -IzoNZe2/6m(r2).  (59) 

Hence, we might expect an approximate relationship 
in diamagnetic crystals of the form 

X = -(eolxoZle l /2m)  Vo. (60) 

This result will not be exact since (59) was derived 
for gases and because we have represented the crystal 
as a simple superposition of spherical atoms. An exact 
relationship can, however, be derived for gases 
between f (0 )  and X (Ibers, 1958). In the old system 
(first Born approximation) the result is 

fn(O) = [47rme2Z/3h2](r2). 

The first and most extensive comparison of Vo 
values (derived from X) with the values measured by 
reflection electron diffraction was given by Miyake 
(1940). 

Values of Vo have been measured by many workers, 
most commonly by using an electron biprism in an 
interference experiment. It may also be measured 
from RHEED experiments (Yamamoto & Spence, 
1983). A summary of measurements is given in Table 
1. Interferometry measurements provide values of the 
product Vot, so the thickness must be known accu- 
rately. This problem is avoided in reflection geometry. 
In transmission work, the highest accuracy has been 
obtained by using cleaved crystalline wedges, for 
which the thickness is accurately known at each 
point (Gajdardziska-Josifovska, McCartney, Weiss, 
de Ruijter & Smith, 1992). Dynamical corrections, 

which can introduce errors of more than a volt, were 
included for the first time in this work. 

In conclusion, we see that Vo has two important 
interpretations - first as a measure of diamagnetic 
susceptibility and, secondly [from (57)], as a measure 
of the 'size' of an atom. It is thus the most sensitive 
of all the structure factors to the state of ionicity of 
atoms in a crystal and, because of the terms in r 2 and 
r 4 in (57), depends strongly on the distribution of 
outer valence electrons. For example, the simple 
expression for Vo in terms of the Gaussian expansion 
of atomic scattering factors given by Peng & Cowley 
(1988) might be used. For MgO, this atomic estimate 
(17.6 V) differs considerably from the experimental 
value of 13.6 V. The difference is due to the redistribu- 
tion of charge in the solid state and the sensitivity of 
(57) provides for this effect. Methods of calculating 
Vo in terms of X-ray structure factors are discussed 
by Becker & Coppens (1990). It is clear that measure- 
ments of Vo by electron diffraction place an important 
constraint on measured X-ray structure factors 
through (57) (see Spence & Zuo, 1992, for silicon). 

6. Materials index 

Table 2 lists many of the accurate structure-factor 
measurements made by electron diffraction, indexed 
by material. (An 'accurate' measurement is one with 
an accuracy in X-ray structure factor of better than 
1%.) Care must be exercised in comparing the results 
of different workers who may use different cell con- 
stants, temperatures, units, cell volumes or absorption 
coefficients for their analysis. 
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Table 

Crystal 

Ag 

AI 

AI-Li 
Au 
Be 

Cd 

CdS 
a-Co 

e-Co 

Co-A1 
Cr 

Cu 

Cu-Au 

ot Fe 

FeCo 

GaAs 

Ge 

Graphite 
Mg 
MgO 

Mo 
Nb 
Ni 
NiA1 

Pt 
Si 

2. Structure factors measured by electron 
diffraction 

Temperature 
(K) Method*  Reference 

293 CV Fukuhara & Yanagisawa 
(1969) 

293 CV Lally et al. (1972) 
293 CV Thomas et al. (1974) 
293 CV Lally et al. (1972) 
293 CV Thomas et al. (1974) 

Fox, Tabbernor & Fisher 
(1990) 

293 CV Fox & Fisher (1987) 
293 CV Thomas et al. (1974) 
293 CV Fox & Fisher (1988a, b) 
293 CV Thomas et al. (1974) 

TF Ichimiya & Uyeda (1977) 
293 CV Jones (1978) 
293 CV Fox & Fisher (1988b) 

TF Ichimiya & Uyeda (1977) 
293 CV Thomas et  al. (1974) 
293 CV Fox & Fisher (1988b) 
293 CV Thomas et al. (1974) 
293 CV Fox & Fisher (1988b) 
293 CV Fox (1983) 
293 CV Thomas et al. (1974) 
293 CV Terasaki, Uchida & 

Watanabe (1975) 
293 CV Thomas et al. (1974) 
293 CV Rocher & Jouffrey (1972) 
293 CV Fisher & Shirley (1981) 

CV/CBED Moodie, Sellar, Imeson & 
Humphreys (1977) 

Tabbernor, Fox & Fisher 
(1990) 

293 CV Fox & Fisher (1986) 
Fox (1984) 

293 CV Thomas et al. (1974) 
293 CV Terasaki et al. (1975) 
293 CV Fox (1983) 

Matsuhata et al. (1983) 
RT CBED Zuo e t  al. (1988) 

Ishizuka & Taft¢ (1984) 
293 CV Hewat & Humphreys (1974) 

Comb. Shishido & Tanaka (1976) 
293 CV Matsushita & Kohra (1974) 

CV Matsumura e t  al. (1989) 
CBED Goodman (1976) 

293 CV Thomas et al. (1974) 
Wedge Herzberg (1971) 
CBED McMahon in Cowley (1981) 
CBED Cowley, Goodman & Rees 

(1957) 
CBED Moli~re & Niehrs (1955) 
CBED Moli~re & Wagenfeld (1957) 
CBED Lehmpfuhl & Moli~re (1961) 
CBED Uyeda & Nonoyama (1965) 
CBED Goodman & Lehmpfuhl 

(1967) 
CBED Zuo, Foley, O'Keefe & 

Spence (1989) 
293 CV Thomas et al. (1974) 
293 CV Thomas et al. (1974)  
293 CV Thomas et al. (1974)  
293 CV Fox (1985) 

Fox (1983) 
Fox & Tabbernor (1991) 

293 CV Fox & Fisher (1988b) 
293 CV Hewat & Humphreys (1974) 

(cell X8) 
CBED Smith & Lehmpfuhl (1975) 
CBED Terasaki et al. (1979) 

293 TF Kreutle & Meyer-Ehmson 
(1971) 

293 TF Ando e t  al. (1974) 
500 TF Kreutle & Meyer-Ehmson 

(1969) 

Table 2 (cont.) 

Temperature 
Crystal (K) Method*  Reference 

Si 293 Cv Thomas et al. (1974) 
293 CV Shishido & Tanaka (1976) 

CBED Voss e t  al. (1980) 
IKL Gj~nnes & Hoier (1971) 
CV Matsumura et  al. (1989) 

Ta 293 CV Thomas et al. (1974) 
Ti 293 CV Arii, Uyeda, Terasaki & 

Watanabe (1973) 
V 293 CV Thomas et al. (1974) 

293 CV Terasaki et al. (1975)  
W 293 CV Thomas et al. (1974) 
Zn 118 CV Fox & Fisher (1988a) 

Jones (1978) 
Tabbernor & Fox (1990) 

* CV = critical voltage; Wedge = wedge spot splitting; CBED = 
convergent-beam electron diffraction; Comb. = combined critical voltage 
and convergent-beam study; TF-thickness fringes; IKL~intersecting 
Kikuchi-line method. 

7. Discussion, concluding remarks and outlook 

The ultimate aim of most of the work in this field has 
been the study of crystal bonding (Dawson, 1967; 
Deutsch, 1991; Hewat & Humphreys, 1974; Watenabe 
et al., 1968; Zuo et al., 1988). For recent reviews of 
the many attempts to quantify bond types in crystals, 
see Cohen (1981) and Catlow & Stonehem (1983). 
For alloys, short-range-order coefficients (Shirley & 
Fisher, 1979) and composition measurements (Butler, 
1972) have also been made, in addition to Debye- 
temperature measurements (Lally et al., 1972). Struc- 
ture-factor measurements may also be used to test 
band-structure calculations (Zuo et aL, 1988; Lu & 
Zunger, 1992). Apart from the physical insight which 
charge-density maps give into the nature of bonding, 
these studies have more practical implications; for 
example, for research into the undesirable low- 
temperature brittleness of intermetallic alloys used in 
gas turbines. Since structure-factor measurements 
may be made from sub-micrometer (or sub- 
nanometer) sized regions, the problems of defects, 
dispersion and extinction which arise in X-ray work 
are avoided. The electron microdiffraction technique 
may thus be applied to the great variety of metastable 
microphases which occur in minerals, composite 
materials and artificial multilayer or quantum-well 
structures which could not readily be studied by other 
techniques. The real power of electron-beam methods 
now lies in their accuracy for structure-factor phase 
measurement and in their ability to study microcrys- 
tals from which large synthetically grown single crys- 
tals cannot be grown. 

In analyzing CV data, the following sources of error 
must be considered: (1) off-systematics reflections, if 
not included in computations; (2) errors in the 
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absorption potential used (the CV is independent of 
this for centric crystals in first-order perturbation 
theory); (3) the influence of anharmonic vibrations 
(Kuhs, 1988); and (4) errors in the temperature fac- 
tors used. Errors in the determination of Fx by CV 
have generally been in the range 0.1-1%. For CBED 
methods, similar accuracies are obtained. Here errors 
in accelerating voltage and orientation must be con- 
sidered. (Thickness and absorption coefficients are 
treated as refinement parameters.) 

The agreement between the X-ray and electron 
work is difficult to evaluate, since results are 
frequently quoted at different temperatures, using 
perhaps different (unstated) cell constants. For Si at 
293 K, however, the CV value of F x ( l l l )  is 
10.711(120) compared with the best (averaged) 
recent experimental X-ray value of 10.6025 (50) 
(Cummings & Hart, 1988). The original value of 
Aldred & Hart (1973) obtained by the X-ray Pendel- 
16sung method (uncorrected for strain, but corrected 
for nuclear Thomson scattering) was 10.735. In gen- 
eral, both the CV and quantitative CBED methods 
appear to be more accurate than X-ray powder or 
single-crystal methods, but less accurate than the 
X-ray Pendell6sung method for the cases to which it 
can be applied. 

For conclusions regarding specific materials, the 
reader is referred to the papers given in Table 2. 
However, certain general observations recur 
throughout this work, and these may be classified as 
referring to semiconductors, elemental metals and 
alloys. 

In the study of bonding in semiconductors, it is 
important to emphasize the extremely small magni- 
tude of the effects sought. Bonding charge densities 
in covalent crystals are typically less than 0.01% of 
the total charge density. The total amount of charge 
redistributed in the solid state is a small fraction even 
of the total which falls within the overlap region when 
neutral-atom charge densities (the promolecule) are 
placed on the atomic sites of the ideal crystal struc- 
ture. Thus, most of the charge overlap between atoms 
is already accounted for by the overlap of neutral 
atoms, and the additional charge redistribution and 
resulting total energy reduction which favors the crys- 
talline state is extremely small. Contour maps, if 
drawn for the total valence charge density using 
neutral atoms, will be indistinguishable from those 
for the fully relaxed crystal. Difference (deformation) 
densities must therefore be plotted and the results 
from different workers may differ widely, particularly 
amongst early X-ray results based on kinematic 
theory, in which difficulties were encountered with 
extinction and diffuse scattering. The statistical sig- 
nificance of these difference maps are discussed by 
Maslen (1988) and Dawson (1969). Since the choice 
of free-atom reference density calculation is some- 
what arbitrary, comparisons between difference 

densities published by different authors for the same 
crystals are difficult. We suggest, therefore, that refer- 
ence densities be obtained from the scattering factors 
in International Tables for Crystallography (1989). In 
this way, comparisons of deformation density can be 
made between the results of different groups. The 
pseudoatom fitting procedures of Dawson, Stewart 
and Coppens should also be used, in which an 
expansion of the difference density is made in 
spherical harmonics and Slater orbitals [see Coppens 
et al. (1979) and references therein]. Because of the 
inevitable presence of noise, temperature effects can- 
not be completely removed by deconvolution and the 
measured charge density or potential is therefore a 
function of temperature. (This makes an important 
contribution even at 0 K, due to zero-point motion.) 
The parameter which undergoes the largest change 
due to bonding, as we have seen, is the mean inner 
potential Vo. 

Silicon has become the model system for all work 
on semiconductors. In summarizing all work on 
silicon recently, Deutsch (1991) finds evidence for a 
0.5% expansion of the L shell and a breakdown of 
the rigid-ion approximation used to describe thermal 
motion. Evidence against the presence of an anhar- 
monic term in the single-atom potential is also found, 
in agreement with the recent CV measurements of 
Matsumura et al. (1989). A summary of all the 
measurements consolidated by Cummings & Hart 
(1988) and a comparison with ab initio band-structure 
computations has recently been given by Lu & Zunger 
(1992). These researchers find excellent agreement 
(R = 0.21%) between calculations based on the local 
density approximation (LDA) and experiment and 
discuss in detail the important question of the effect 
of high-order reflections (which are difficult to 
measure experimentally) on deformation densities. 
In general, one expects the Fourier coefficients of the 
deformation density to fall off rapidly with scattering 
angle, due to the effects of the temperature factor and 
because core charge is relatively insensitive to bond- 
ing. If a suitable (arbitrary) bond volume is defined, 
it becomes possible to measure the total charge within 
the bond. Thus, Hewat & Humphreys (1974) found 
from CV measurements that the total bond-charge 
redistribution per atom in Si is within 10-20% of that 
which occurs in Ge. This is consistent with the 
measured equality of Si-Si and Ge-Ge bond energies, 
and the assumption that Ge is slightly more elec- 
tronegative than Si. The 222 reflection in Si is 'forbid- 
den' for spherical atoms, but found experimentally 
to be about 2% of the magnitude of the 111. It may 
appear strongly in electron diffraction, allowing its 
magnitude and sign to be measured with high 
accuracy [see Ando, Ichimiya & Uyeda (1974) and 
references therein]. For GaAs, Zuo et al. (1988) con- 
clude from quantitative CBED work that the amount 
of (deformation) charge in the Ga-As bond is 0.071 e, 
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in good agreement with the results of pseudopotential  
calculations. Fig. 10 shows their deformation density 
plotted on the (110) plane which contains the bond. 
[Some additional structure factors from Bernard & 
Zunger (1989) have also been included.] Evidence 
for both ionic and covalent character in the bond is 
adduced by examining the charge density along the 
bond. 

For the elemental metals (e.g. Cu and A1), bonding 
is found to result from a spherical depletion of charge 
away from the atomic sites into the spaces between 
nearest neighbors along (110) (Smart & Humphreys,  
1980; Tabbernor,  Fox & Fisher, 1990). In these cubic 
metals it is found that only the 111,200, 222 and 220 
experimental values differ appreciably from the RHF 
free-atom scattering values. For Cu, Smart & Hum- 
phreys (1978) find a peak in the difference potential 
at the octahedral hole site, thus reducing the depth 
of the minimum predicted by simple hard-sphere 
models of atomic packing. Good agreement has been 
found between CV measurements, X-ray Pendell6sung 
measurements and band-structure calculations for Cu 
by Tabbernor et al. (1990). In Be, a build-up of 
valence electrons is found in the bipyramidal space 
around the tetrahedral holes (Fox & Fisher, 1988a). 

For metal alloys, several workers have used the CV 
technique to measure short-range-order parameters. 
For example, a two-parameter model which can be 
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Fig. 10. Charge-density difference map Ap(r) for GaAs on the 
(1101 plane containing the interatomic bond. Continuous lines 
are electron-surplus regions [with respect to 'neutral' atoms, 
defined by structure factors taken from International Tables for 
Crystallography (1989)], dashed lines are electron-deficient 
regions. The contour increment is 0.0166~ -3. Difference 
coefficients included out to 333, some values from Bernard & 
Zunger (1989). 

used to interpret CVs in substitutional solid solutions 
is given by Shirley & Fisher (1979), taking into 
account vibration amplitudes and static displace- 
ments (Fox & Shirley, 1983). Indications of covalent 
bonding in /3'-NiA1 are given by Fox (1985), based 
on CV measurements. Bonding is found to result 
again from a redistribution of electrons from both 
the Ni and AI sites into the midpoints between 
nearest-neighbor atoms along [111]. No ionic com- 
ponent of bonding was found (Fox & Tabbernor 
1991). A recent comparison of this work with ab initio 
calculations (Lu, Wei & Zunger, 1993) finds good 
agreement with three of the four measured structure 
factors, but reports important higher-order terms 
which contribute a directional d-like character to the 
bonding. They conclude that the bonding is mixed 
ionic-covalent,  with an overall transfer of charge 
from A1 to Ni (relative to neutral atoms). 

This work on intermetallic alloys may have impor- 
tant implications for our understanding of mechanical 
properties. For example, for the case of TiA1, 
Greenberg, Anisimov, Gornostirev & Taluts (1988) 
have suggested that low-temperature brittleness in 
one phase may be due to covalent bonding on the Ti 
sublattice involving d electrons. The A1 sublattice is 
supposed to support metallic bonding involving s and 
p electrons. The lattice friction then becomes 
anisotropic. Dislocations gliding on (111) then see 
an anomolously deep Peierls valley along [110] direc- 
tions, along which they may become trapped at low 
temperature. The thermally activated release of 
double kinks from these valleys may account for the 
observed peak in the yield stress. 

Experimentally, the field of inorganic electron crys- 
tallography is about to enter its most exciting stage. 
The appearance of imaging energy filters [either of 
the Omega design (Mayer  et al., 1991) or as part 
of a parallel electron energy-loss spectrometer 
(Krivanek & Ahn, 1986)], of charge-coupled-device 
detectors, of field-emission guns for T E M / S T E M  
instruments and of inexpensive RISC work stations 
and flexible computer control of electron microscopes 
are certain to revolutionize the field in the near future. 
For line scans, however, the unrivalled dynamic range 
of the photomultiplier and serial spectrometer may 
remain superior. The ability to define a curved trajec- 
tory for the filtered scan has proven invaluable for 
three-beam nonsystematic work. (A fast scan mode 
is used to display the CBED pattern while defining 
the locus of the scan required.) 

For the future, it would seem that electron crystal- 
lography of inorganic crystals is best suited to the 
study of microcrystals or artificially formed crystals 
which cannot easily be studied by other methods, to 
the measurement of structure-factor phases with very 
high accuracy and to the measurement of the mean 
inner potential. We have seen that this quantity is 
more sensitive than any other low-order electron 
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structure factor to the distribution of bonding elec- 
trons (Becker & Coppens, 1990). Since the ideal 
strength of solids is greatest for crystals consisting of 
small covalently bonded atoms, a relationship 
between mechanical properties and Vo might be 
sought. The strength of electron scattering makes the 
study of crystals containing hydrogen possible. In 
addition, there are many cases for which an X-ray 
analysis is most productively performed in conjunc- 
tion with an electron analysis of the same material. 
Finally, the failure conditions of the local density 
approximation might be evaluated by comparing 
measured V0 and low-order structure factors with 
calculations for van der Waals bonded crystals, where 
this approximation is known to be least accurate. 

This work was supported by NSF award DMR- 
9015867 and the facilities of the NSF-ASU Center 
for High Resolution Electron Microscopy. The author 
gratefully acknowledges discussions with and contri- 
butions from Drs J. M. Zuo, A. Fox, M. O'Keeffe 
and R. H0ier. 

Note added in proof: Since this review was submit- 
ted, computing speeds have increased considerably. 
A further speed increase in R E F I N E / C B  has been 
obtained by using the Bethe potential method for 
weak outer reflections without loss of accuracy (Zuo, 
1993). 
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Abstract 

An exact representation of the accurately computable 
conditional probability density function (c.p.d.f.) of 
the three-phase invariant for the space group P1 was 
developed in paper I of this series [Shmueli, 
Rabinovich & Weiss (1989). Acta Cryst. A45, 361- 
367]. The computation of this function is too time- 
consuming for it to be of practical value. It is therefore 
desirable to find simple approximations based on the 
exact result that may be more accurate than the 
familiar Cochran approximation or its extensions. 

One such approximation, presented here, has the 
same functional form as the Cochran approximation 
but with a modified parameter in place of that appear- 
ing in Cochran's distribution. Some of the numerical 
procedures used in the estimation of this modified 
parameter are also discussed. 

Introduction 

One of the earliest and still the most frequently 
employed phase-dependent quantities is the three- 
phase structure invariant, which is the phase of the 
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